Loading…

Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region

Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this...

Full description

Saved in:
Bibliographic Details
Published in:Pedosphere 2013-06, Vol.23 (3), p.290-297
Main Authors: RITTL, T., COOPER, M., HECK, R.J., BALLESTER, M.V.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203
cites cdi_FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203
container_end_page 297
container_issue 3
container_start_page 290
container_title Pedosphere
container_volume 23
creator RITTL, T.
COOPER, M.
HECK, R.J.
BALLESTER, M.V.R.
description Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.
doi_str_mv 10.1016/S1002-0160(13)60018-1
format article
fullrecord <record><control><sourceid>wanfang_jour_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_439113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45637506</cqvip_id><wanfj_id>trq_e201303003</wanfj_id><els_id>S1002016013600181</els_id><sourcerecordid>trq_e201303003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203</originalsourceid><addsrcrecordid>eNqFUcuOEzEQHCGQCIFPQDIXtBwG2uN5ckHZiJcUlGiBs9XxtBNHEzuxPbvAR_DNOJvdvXJxW3ZVdXdVlr3k8JYDr9995wBFnm5wwcWbGoC3OX-UTYqCQ15xaB5nkwfI0-xZCDuAknecT7K_y_WOVMwvMVDPvlHcup4tx3ggr53fB7Yin6_MLxruP9MzW6Dt2dxdk2fzAUMw2iiMxllmLEO28i4m0SQ484TMaRa3xC49_jGDQctmcUAbjWJXaGzSoxDZFW0S_3n2ROMQ6MVdnWY_P338Mf-SL5afv85ni1yVFcScNzV0usQOUTSVaqFv2kLotu15q7u-1W2j10pVfM2VKGssRVFzKlrsO667AsQ0e3_WvcENWWPTIS16ZYJ0aORg1h79b3kzemmHUzmM6yBLkTwTifz6nmw12o3cudHbNK6M_iipAC5AAJyAF2fgwbvjmLaUexMUDWl7cmOQXDQFVEXVdAlanaHKuxA8aXnwZn-agYM8pSxvU5anCBNP3qacLtPsw5lHya1rQ14GZcgq6o1PEcjemf8qvLrrvHV2c0xePLQuqzrZC7X4Bwjuu0c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372052579</pqid></control><display><type>article</type><title>Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region</title><source>ScienceDirect Freedom Collection</source><creator>RITTL, T. ; COOPER, M. ; HECK, R.J. ; BALLESTER, M.V.R.</creator><creatorcontrib>RITTL, T. ; COOPER, M. ; HECK, R.J. ; BALLESTER, M.V.R.</creatorcontrib><description>Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.</description><identifier>ISSN: 1002-0160</identifier><identifier>EISSN: 2210-5107</identifier><identifier>DOI: 10.1016/S1002-0160(13)60018-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>accuracy assessment ; Bos- en Natuurbeleid ; eCognition ; Forest and Nature Conservation Policy ; image classification ; Kappa index ; Leerstoelgroep Bos- en natuurbeleid ; PE&amp;RC ; user's knowledge ; 保护区 ; 像素 ; 分类方法 ; 土地覆盖分类 ; 基于对象 ; 大西洋 ; 巴西</subject><ispartof>Pedosphere, 2013-06, Vol.23 (3), p.290-297</ispartof><rights>2013 Soil Science Society of China</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203</citedby><cites>FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85078X/85078X.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>RITTL, T.</creatorcontrib><creatorcontrib>COOPER, M.</creatorcontrib><creatorcontrib>HECK, R.J.</creatorcontrib><creatorcontrib>BALLESTER, M.V.R.</creatorcontrib><title>Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region</title><title>Pedosphere</title><addtitle>Pedosphere</addtitle><description>Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.</description><subject>accuracy assessment</subject><subject>Bos- en Natuurbeleid</subject><subject>eCognition</subject><subject>Forest and Nature Conservation Policy</subject><subject>image classification</subject><subject>Kappa index</subject><subject>Leerstoelgroep Bos- en natuurbeleid</subject><subject>PE&amp;RC</subject><subject>user's knowledge</subject><subject>保护区</subject><subject>像素</subject><subject>分类方法</subject><subject>土地覆盖分类</subject><subject>基于对象</subject><subject>大西洋</subject><subject>巴西</subject><issn>1002-0160</issn><issn>2210-5107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUcuOEzEQHCGQCIFPQDIXtBwG2uN5ckHZiJcUlGiBs9XxtBNHEzuxPbvAR_DNOJvdvXJxW3ZVdXdVlr3k8JYDr9995wBFnm5wwcWbGoC3OX-UTYqCQ15xaB5nkwfI0-xZCDuAknecT7K_y_WOVMwvMVDPvlHcup4tx3ggr53fB7Yin6_MLxruP9MzW6Dt2dxdk2fzAUMw2iiMxllmLEO28i4m0SQ484TMaRa3xC49_jGDQctmcUAbjWJXaGzSoxDZFW0S_3n2ROMQ6MVdnWY_P338Mf-SL5afv85ni1yVFcScNzV0usQOUTSVaqFv2kLotu15q7u-1W2j10pVfM2VKGssRVFzKlrsO667AsQ0e3_WvcENWWPTIS16ZYJ0aORg1h79b3kzemmHUzmM6yBLkTwTifz6nmw12o3cudHbNK6M_iipAC5AAJyAF2fgwbvjmLaUexMUDWl7cmOQXDQFVEXVdAlanaHKuxA8aXnwZn-agYM8pSxvU5anCBNP3qacLtPsw5lHya1rQ14GZcgq6o1PEcjemf8qvLrrvHV2c0xePLQuqzrZC7X4Bwjuu0c</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>RITTL, T.</creator><creator>COOPER, M.</creator><creator>HECK, R.J.</creator><creator>BALLESTER, M.V.R.</creator><general>Elsevier Ltd</general><general>Department of Soil Quality, University of Wageningen, Wageningen 6700 AA Netherlands%Department of Soil Science, University of S(a)o Paulo, Piracicaba SP13418-900 Brazil%School of Environmental Sciences, University of Guelph, Guelph ON N1G2W1,Canada%Center for Nuclear Energy in Agriculture(CENA), University of S(a)o Paulo, Piracicaba SP 13416-000 Brazil</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W95</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>QVL</scope></search><sort><creationdate>20130601</creationdate><title>Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region</title><author>RITTL, T. ; COOPER, M. ; HECK, R.J. ; BALLESTER, M.V.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>accuracy assessment</topic><topic>Bos- en Natuurbeleid</topic><topic>eCognition</topic><topic>Forest and Nature Conservation Policy</topic><topic>image classification</topic><topic>Kappa index</topic><topic>Leerstoelgroep Bos- en natuurbeleid</topic><topic>PE&amp;RC</topic><topic>user's knowledge</topic><topic>保护区</topic><topic>像素</topic><topic>分类方法</topic><topic>土地覆盖分类</topic><topic>基于对象</topic><topic>大西洋</topic><topic>巴西</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RITTL, T.</creatorcontrib><creatorcontrib>COOPER, M.</creatorcontrib><creatorcontrib>HECK, R.J.</creatorcontrib><creatorcontrib>BALLESTER, M.V.R.</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-农业科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>NARCIS:Publications</collection><jtitle>Pedosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RITTL, T.</au><au>COOPER, M.</au><au>HECK, R.J.</au><au>BALLESTER, M.V.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region</atitle><jtitle>Pedosphere</jtitle><addtitle>Pedosphere</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>290</spage><epage>297</epage><pages>290-297</pages><issn>1002-0160</issn><eissn>2210-5107</eissn><abstract>Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1002-0160(13)60018-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1002-0160
ispartof Pedosphere, 2013-06, Vol.23 (3), p.290-297
issn 1002-0160
2210-5107
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_439113
source ScienceDirect Freedom Collection
subjects accuracy assessment
Bos- en Natuurbeleid
eCognition
Forest and Nature Conservation Policy
image classification
Kappa index
Leerstoelgroep Bos- en natuurbeleid
PE&RC
user's knowledge
保护区
像素
分类方法
土地覆盖分类
基于对象
大西洋
巴西
title Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object-Based%20Method%20Outperforms%20Per-Pixel%20Method%20for%20Land%20Cover%20Classification%20in%20a%20Protected%20Area%20of%20the%20Brazilian%20Atlantic%20Rainforest%20Region&rft.jtitle=Pedosphere&rft.au=RITTL,%20T.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=290&rft.epage=297&rft.pages=290-297&rft.issn=1002-0160&rft.eissn=2210-5107&rft_id=info:doi/10.1016/S1002-0160(13)60018-1&rft_dat=%3Cwanfang_jour_wagen%3Etrq_e201303003%3C/wanfang_jour_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1372052579&rft_id=info:pmid/&rft_cqvip_id=45637506&rft_wanfj_id=trq_e201303003&rfr_iscdi=true