Loading…
Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region
Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this...
Saved in:
Published in: | Pedosphere 2013-06, Vol.23 (3), p.290-297 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203 |
container_end_page | 297 |
container_issue | 3 |
container_start_page | 290 |
container_title | Pedosphere |
container_volume | 23 |
creator | RITTL, T. COOPER, M. HECK, R.J. BALLESTER, M.V.R. |
description | Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification. |
doi_str_mv | 10.1016/S1002-0160(13)60018-1 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_439113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45637506</cqvip_id><wanfj_id>trq_e201303003</wanfj_id><els_id>S1002016013600181</els_id><sourcerecordid>trq_e201303003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203</originalsourceid><addsrcrecordid>eNqFUcuOEzEQHCGQCIFPQDIXtBwG2uN5ckHZiJcUlGiBs9XxtBNHEzuxPbvAR_DNOJvdvXJxW3ZVdXdVlr3k8JYDr9995wBFnm5wwcWbGoC3OX-UTYqCQ15xaB5nkwfI0-xZCDuAknecT7K_y_WOVMwvMVDPvlHcup4tx3ggr53fB7Yin6_MLxruP9MzW6Dt2dxdk2fzAUMw2iiMxllmLEO28i4m0SQ484TMaRa3xC49_jGDQctmcUAbjWJXaGzSoxDZFW0S_3n2ROMQ6MVdnWY_P338Mf-SL5afv85ni1yVFcScNzV0usQOUTSVaqFv2kLotu15q7u-1W2j10pVfM2VKGssRVFzKlrsO667AsQ0e3_WvcENWWPTIS16ZYJ0aORg1h79b3kzemmHUzmM6yBLkTwTifz6nmw12o3cudHbNK6M_iipAC5AAJyAF2fgwbvjmLaUexMUDWl7cmOQXDQFVEXVdAlanaHKuxA8aXnwZn-agYM8pSxvU5anCBNP3qacLtPsw5lHya1rQ14GZcgq6o1PEcjemf8qvLrrvHV2c0xePLQuqzrZC7X4Bwjuu0c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372052579</pqid></control><display><type>article</type><title>Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region</title><source>ScienceDirect Freedom Collection</source><creator>RITTL, T. ; COOPER, M. ; HECK, R.J. ; BALLESTER, M.V.R.</creator><creatorcontrib>RITTL, T. ; COOPER, M. ; HECK, R.J. ; BALLESTER, M.V.R.</creatorcontrib><description>Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.</description><identifier>ISSN: 1002-0160</identifier><identifier>EISSN: 2210-5107</identifier><identifier>DOI: 10.1016/S1002-0160(13)60018-1</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>accuracy assessment ; Bos- en Natuurbeleid ; eCognition ; Forest and Nature Conservation Policy ; image classification ; Kappa index ; Leerstoelgroep Bos- en natuurbeleid ; PE&RC ; user's knowledge ; 保护区 ; 像素 ; 分类方法 ; 土地覆盖分类 ; 基于对象 ; 大西洋 ; 巴西</subject><ispartof>Pedosphere, 2013-06, Vol.23 (3), p.290-297</ispartof><rights>2013 Soil Science Society of China</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203</citedby><cites>FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85078X/85078X.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>RITTL, T.</creatorcontrib><creatorcontrib>COOPER, M.</creatorcontrib><creatorcontrib>HECK, R.J.</creatorcontrib><creatorcontrib>BALLESTER, M.V.R.</creatorcontrib><title>Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region</title><title>Pedosphere</title><addtitle>Pedosphere</addtitle><description>Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.</description><subject>accuracy assessment</subject><subject>Bos- en Natuurbeleid</subject><subject>eCognition</subject><subject>Forest and Nature Conservation Policy</subject><subject>image classification</subject><subject>Kappa index</subject><subject>Leerstoelgroep Bos- en natuurbeleid</subject><subject>PE&RC</subject><subject>user's knowledge</subject><subject>保护区</subject><subject>像素</subject><subject>分类方法</subject><subject>土地覆盖分类</subject><subject>基于对象</subject><subject>大西洋</subject><subject>巴西</subject><issn>1002-0160</issn><issn>2210-5107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUcuOEzEQHCGQCIFPQDIXtBwG2uN5ckHZiJcUlGiBs9XxtBNHEzuxPbvAR_DNOJvdvXJxW3ZVdXdVlr3k8JYDr9995wBFnm5wwcWbGoC3OX-UTYqCQ15xaB5nkwfI0-xZCDuAknecT7K_y_WOVMwvMVDPvlHcup4tx3ggr53fB7Yin6_MLxruP9MzW6Dt2dxdk2fzAUMw2iiMxllmLEO28i4m0SQ484TMaRa3xC49_jGDQctmcUAbjWJXaGzSoxDZFW0S_3n2ROMQ6MVdnWY_P338Mf-SL5afv85ni1yVFcScNzV0usQOUTSVaqFv2kLotu15q7u-1W2j10pVfM2VKGssRVFzKlrsO667AsQ0e3_WvcENWWPTIS16ZYJ0aORg1h79b3kzemmHUzmM6yBLkTwTifz6nmw12o3cudHbNK6M_iipAC5AAJyAF2fgwbvjmLaUexMUDWl7cmOQXDQFVEXVdAlanaHKuxA8aXnwZn-agYM8pSxvU5anCBNP3qacLtPsw5lHya1rQ14GZcgq6o1PEcjemf8qvLrrvHV2c0xePLQuqzrZC7X4Bwjuu0c</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>RITTL, T.</creator><creator>COOPER, M.</creator><creator>HECK, R.J.</creator><creator>BALLESTER, M.V.R.</creator><general>Elsevier Ltd</general><general>Department of Soil Quality, University of Wageningen, Wageningen 6700 AA Netherlands%Department of Soil Science, University of S(a)o Paulo, Piracicaba SP13418-900 Brazil%School of Environmental Sciences, University of Guelph, Guelph ON N1G2W1,Canada%Center for Nuclear Energy in Agriculture(CENA), University of S(a)o Paulo, Piracicaba SP 13416-000 Brazil</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W95</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><scope>QVL</scope></search><sort><creationdate>20130601</creationdate><title>Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region</title><author>RITTL, T. ; COOPER, M. ; HECK, R.J. ; BALLESTER, M.V.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>accuracy assessment</topic><topic>Bos- en Natuurbeleid</topic><topic>eCognition</topic><topic>Forest and Nature Conservation Policy</topic><topic>image classification</topic><topic>Kappa index</topic><topic>Leerstoelgroep Bos- en natuurbeleid</topic><topic>PE&RC</topic><topic>user's knowledge</topic><topic>保护区</topic><topic>像素</topic><topic>分类方法</topic><topic>土地覆盖分类</topic><topic>基于对象</topic><topic>大西洋</topic><topic>巴西</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RITTL, T.</creatorcontrib><creatorcontrib>COOPER, M.</creatorcontrib><creatorcontrib>HECK, R.J.</creatorcontrib><creatorcontrib>BALLESTER, M.V.R.</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-农业科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><collection>NARCIS:Publications</collection><jtitle>Pedosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RITTL, T.</au><au>COOPER, M.</au><au>HECK, R.J.</au><au>BALLESTER, M.V.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region</atitle><jtitle>Pedosphere</jtitle><addtitle>Pedosphere</addtitle><date>2013-06-01</date><risdate>2013</risdate><volume>23</volume><issue>3</issue><spage>290</spage><epage>297</epage><pages>290-297</pages><issn>1002-0160</issn><eissn>2210-5107</eissn><abstract>Conventional image classification based on pixels hinders the possibilities to obtain information contained in images, while modern object-based classification methods increase the acquisition of information about the object and the context in which it is inserted in the image. The objective of this study was to investigate the performance of different classification methods for land cover mapping in the vicinity of the Alto Ribeira Tourist State Park, a Brazilian Atlantic rainforest area. Two classification methods were tested, including i) a hybrid per-pixel classification using the image processing software ERDAS Imagine version 9.1 and ii) an object-based classification using the software eCognition version 5. In the first method, six different classes were established, while in the second method, another two classes were established in addition to the six classes in the first method. Accuracy assessment of the classification results presented showed that the object-based classification with a Kappa index value of 0.8687 outperformed the per-pixel classification with a Kappa index value of 0.2224. Application of the user's knowledge during the object-based classification process achieved the desired quality; therefore, the use of inter-relationships between objects, superelasses, subclasses, and neighboring classes were critical to improving the efficiency of land cover classification.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S1002-0160(13)60018-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1002-0160 |
ispartof | Pedosphere, 2013-06, Vol.23 (3), p.290-297 |
issn | 1002-0160 2210-5107 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_439113 |
source | ScienceDirect Freedom Collection |
subjects | accuracy assessment Bos- en Natuurbeleid eCognition Forest and Nature Conservation Policy image classification Kappa index Leerstoelgroep Bos- en natuurbeleid PE&RC user's knowledge 保护区 像素 分类方法 土地覆盖分类 基于对象 大西洋 巴西 |
title | Object-Based Method Outperforms Per-Pixel Method for Land Cover Classification in a Protected Area of the Brazilian Atlantic Rainforest Region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object-Based%20Method%20Outperforms%20Per-Pixel%20Method%20for%20Land%20Cover%20Classification%20in%20a%20Protected%20Area%20of%20the%20Brazilian%20Atlantic%20Rainforest%20Region&rft.jtitle=Pedosphere&rft.au=RITTL,%20T.&rft.date=2013-06-01&rft.volume=23&rft.issue=3&rft.spage=290&rft.epage=297&rft.pages=290-297&rft.issn=1002-0160&rft.eissn=2210-5107&rft_id=info:doi/10.1016/S1002-0160(13)60018-1&rft_dat=%3Cwanfang_jour_wagen%3Etrq_e201303003%3C/wanfang_jour_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-17609f4a9aa375c80d7823f88d18f9d8f87fbcc51b1c346a43261e28ad91f9203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1372052579&rft_id=info:pmid/&rft_cqvip_id=45637506&rft_wanfj_id=trq_e201303003&rfr_iscdi=true |