Loading…

Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1–2.4 μm) and regression tree analysis

This paper presents a methodology for assessing mineral abundances of mixtures having more than two constituents using absorption features in the 2.1–2.4μm wavelength region. In the first step, the absorption behaviour of mineral mixtures is parameterised by exponential Gaussian optimisation. Next,...

Full description

Saved in:
Bibliographic Details
Published in:Geoderma 2013-10, Vol.207-208, p.279-290
Main Authors: Mulder, V.L., Plötze, M., de Bruin, S., Schaepman, M.E., Mavris, C., Kokaly, R.F., Egli, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a methodology for assessing mineral abundances of mixtures having more than two constituents using absorption features in the 2.1–2.4μm wavelength region. In the first step, the absorption behaviour of mineral mixtures is parameterised by exponential Gaussian optimisation. Next, mineral abundances are predicted by regression tree analysis using these parameters as inputs. The approach is demonstrated on a range of prepared samples with known abundances of kaolinite, dioctahedral mica, smectite, calcite and quartz and on a set of field samples from Morocco. The latter contained varying quantities of other minerals, some of which did not have diagnostic absorption features in the 2.1–2.4μm region. Cross validation showed that the prepared samples of kaolinite, dioctahedral mica, smectite and calcite were predicted with a root mean square error (RMSE) less than 9wt.%. For the field samples, the RMSE was less than 8wt.% for calcite, dioctahedral mica and kaolinite abundances. Smectite could not be well predicted, which was attributed to spectral variation of the cations within the dioctahedral layered smectites. Substitution of part of the quartz by chlorite at the prediction phase hardly affected the accuracy of the predicted mineral content; this suggests that the method is robust in handling the omission of minerals during the training phase. The degree of expression of absorption components was different between the field sample and the laboratory mixtures. This demonstrates that the method should be calibrated and trained on local samples. Our method allows the simultaneous quantification of more than two minerals within a complex mixture and thereby enhances the perspectives of spectral analysis for mineral abundances. •The EGO algorithm parameterises the absorption behaviour of mineral mixtures.•The complexity of mineral mixtures was modelled using regression tree analysis.•This method allows the quantification of more than 2 minerals within a mixture.
ISSN:0016-7061
1872-6259
DOI:10.1016/j.geoderma.2013.05.011