Loading…

Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region

Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of spatial science 2015-01, Vol.60 (1), p.37-49
Main Authors: Alibegovic, G., Schut, A.G.T., Wardell-Johnson, G.W., Robinson, T.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3
cites cdi_FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3
container_end_page 49
container_issue 1
container_start_page 37
container_title Journal of spatial science
container_volume 60
creator Alibegovic, G.
Schut, A.G.T.
Wardell-Johnson, G.W.
Robinson, T.P.
description Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences, combined with a supervised classification, allowed differentiation of granite from other land covers on five GOs across the rainfall gradient. This methodology provided high classification accuracy (Overall Kappa ranged from 0.83 to 0.91) irrespective of location. Therefore, there is potential to use these methods to compile a more complete GO inventory over the region.
doi_str_mv 10.1080/14498596.2014.952253
format article
fullrecord <record><control><sourceid>wageningen_cross</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_477467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_library_wur_nl_wurpubs_477467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3</originalsourceid><addsrcrecordid>eNp9UU1r3DAQNaGFpGn_QQ76A95K1oflXEoITRvYUGjSsxhLo42CVzaSzbLH_vPK2eTa0wwz7735eFV1xeiGUU2_MiE6LTu1aSgTm042jeRn1QXTXNVSSfmh5AVSr5jz6lPOL5Qqrqm6qP4-IuQxwkBc8B4TRouZQM4hzyREsodpCnFHdglimJGMy2zTOGWy5LW8hegyzOTpgYQ97DAdCZR-zmR-RvJY0M8HLEo3S54TDAEiuRvGVMSDJb9xF8b4ufroYcj45S1eVn_uvj_d_qy3v37c395sa8ulnusetWYaGwltL5gUHbaUt41izgumpLcOeIuspxad6xrr0PYNR90p4SUoxy-r65PuoewZy_IYTYRkQzYjBDOEPkE6msOSTBzWMC19NqJthWoLWZzIr8cl9GZK5eCCZ9SsHph3D8zqgTl5UGjfTrQQ_Zj2cBjT4MwMx_IDXz66Duf_VfgHqFOTUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region</title><source>Taylor and Francis Science and Technology Collection</source><creator>Alibegovic, G. ; Schut, A.G.T. ; Wardell-Johnson, G.W. ; Robinson, T.P.</creator><creatorcontrib>Alibegovic, G. ; Schut, A.G.T. ; Wardell-Johnson, G.W. ; Robinson, T.P.</creatorcontrib><description>Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences, combined with a supervised classification, allowed differentiation of granite from other land covers on five GOs across the rainfall gradient. This methodology provided high classification accuracy (Overall Kappa ranged from 0.83 to 0.91) irrespective of location. Therefore, there is potential to use these methods to compile a more complete GO inventory over the region.</description><identifier>ISSN: 1449-8596</identifier><identifier>EISSN: 1836-5655</identifier><identifier>DOI: 10.1080/14498596.2014.952253</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>band ratios ; biodiversity ; climate-change ; cover ; granite outcrops ; habitat refuges ; Landsat TM ; machine learning algorithms ; reflection radiometer aster ; refugia ; spaceborne thermal emission ; vegetation ; vegetation indices ; western-australia</subject><ispartof>Journal of spatial science, 2015-01, Vol.60 (1), p.37-49</ispartof><rights>2014 Mapping Sciences Institute, Australia and Surveying and Spatial Sciences Institute 2014</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3</citedby><cites>FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Alibegovic, G.</creatorcontrib><creatorcontrib>Schut, A.G.T.</creatorcontrib><creatorcontrib>Wardell-Johnson, G.W.</creatorcontrib><creatorcontrib>Robinson, T.P.</creatorcontrib><title>Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region</title><title>Journal of spatial science</title><description>Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences, combined with a supervised classification, allowed differentiation of granite from other land covers on five GOs across the rainfall gradient. This methodology provided high classification accuracy (Overall Kappa ranged from 0.83 to 0.91) irrespective of location. Therefore, there is potential to use these methods to compile a more complete GO inventory over the region.</description><subject>band ratios</subject><subject>biodiversity</subject><subject>climate-change</subject><subject>cover</subject><subject>granite outcrops</subject><subject>habitat refuges</subject><subject>Landsat TM</subject><subject>machine learning algorithms</subject><subject>reflection radiometer aster</subject><subject>refugia</subject><subject>spaceborne thermal emission</subject><subject>vegetation</subject><subject>vegetation indices</subject><subject>western-australia</subject><issn>1449-8596</issn><issn>1836-5655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQNaGFpGn_QQ76A95K1oflXEoITRvYUGjSsxhLo42CVzaSzbLH_vPK2eTa0wwz7735eFV1xeiGUU2_MiE6LTu1aSgTm042jeRn1QXTXNVSSfmh5AVSr5jz6lPOL5Qqrqm6qP4-IuQxwkBc8B4TRouZQM4hzyREsodpCnFHdglimJGMy2zTOGWy5LW8hegyzOTpgYQ97DAdCZR-zmR-RvJY0M8HLEo3S54TDAEiuRvGVMSDJb9xF8b4ufroYcj45S1eVn_uvj_d_qy3v37c395sa8ulnusetWYaGwltL5gUHbaUt41izgumpLcOeIuspxad6xrr0PYNR90p4SUoxy-r65PuoewZy_IYTYRkQzYjBDOEPkE6msOSTBzWMC19NqJthWoLWZzIr8cl9GZK5eCCZ9SsHph3D8zqgTl5UGjfTrQQ_Zj2cBjT4MwMx_IDXz66Duf_VfgHqFOTUw</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Alibegovic, G.</creator><creator>Schut, A.G.T.</creator><creator>Wardell-Johnson, G.W.</creator><creator>Robinson, T.P.</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>QVL</scope></search><sort><creationdate>20150102</creationdate><title>Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region</title><author>Alibegovic, G. ; Schut, A.G.T. ; Wardell-Johnson, G.W. ; Robinson, T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>band ratios</topic><topic>biodiversity</topic><topic>climate-change</topic><topic>cover</topic><topic>granite outcrops</topic><topic>habitat refuges</topic><topic>Landsat TM</topic><topic>machine learning algorithms</topic><topic>reflection radiometer aster</topic><topic>refugia</topic><topic>spaceborne thermal emission</topic><topic>vegetation</topic><topic>vegetation indices</topic><topic>western-australia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alibegovic, G.</creatorcontrib><creatorcontrib>Schut, A.G.T.</creatorcontrib><creatorcontrib>Wardell-Johnson, G.W.</creatorcontrib><creatorcontrib>Robinson, T.P.</creatorcontrib><collection>CrossRef</collection><collection>NARCIS:Publications</collection><jtitle>Journal of spatial science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alibegovic, G.</au><au>Schut, A.G.T.</au><au>Wardell-Johnson, G.W.</au><au>Robinson, T.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region</atitle><jtitle>Journal of spatial science</jtitle><date>2015-01-02</date><risdate>2015</risdate><volume>60</volume><issue>1</issue><spage>37</spage><epage>49</epage><pages>37-49</pages><issn>1449-8596</issn><eissn>1836-5655</eissn><abstract>Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences, combined with a supervised classification, allowed differentiation of granite from other land covers on five GOs across the rainfall gradient. This methodology provided high classification accuracy (Overall Kappa ranged from 0.83 to 0.91) irrespective of location. Therefore, there is potential to use these methods to compile a more complete GO inventory over the region.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/14498596.2014.952253</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1449-8596
ispartof Journal of spatial science, 2015-01, Vol.60 (1), p.37-49
issn 1449-8596
1836-5655
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_477467
source Taylor and Francis Science and Technology Collection
subjects band ratios
biodiversity
climate-change
cover
granite outcrops
habitat refuges
Landsat TM
machine learning algorithms
reflection radiometer aster
refugia
spaceborne thermal emission
vegetation
vegetation indices
western-australia
title Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wageningen_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20differences%20assist%20in%20mapping%20granite%20outcrops%20using%20Landsat%20TM%20imagery%20across%20the%20Southwest%20Australian%20Floristic%20Region&rft.jtitle=Journal%20of%20spatial%20science&rft.au=Alibegovic,%20G.&rft.date=2015-01-02&rft.volume=60&rft.issue=1&rft.spage=37&rft.epage=49&rft.pages=37-49&rft.issn=1449-8596&rft.eissn=1836-5655&rft_id=info:doi/10.1080/14498596.2014.952253&rft_dat=%3Cwageningen_cross%3Eoai_library_wur_nl_wurpubs_477467%3C/wageningen_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true