Loading…
Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region
Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences,...
Saved in:
Published in: | Journal of spatial science 2015-01, Vol.60 (1), p.37-49 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3 |
container_end_page | 49 |
container_issue | 1 |
container_start_page | 37 |
container_title | Journal of spatial science |
container_volume | 60 |
creator | Alibegovic, G. Schut, A.G.T. Wardell-Johnson, G.W. Robinson, T.P. |
description | Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences, combined with a supervised classification, allowed differentiation of granite from other land covers on five GOs across the rainfall gradient. This methodology provided high classification accuracy (Overall Kappa ranged from 0.83 to 0.91) irrespective of location. Therefore, there is potential to use these methods to compile a more complete GO inventory over the region. |
doi_str_mv | 10.1080/14498596.2014.952253 |
format | article |
fullrecord | <record><control><sourceid>wageningen_cross</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_477467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_library_wur_nl_wurpubs_477467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3</originalsourceid><addsrcrecordid>eNp9UU1r3DAQNaGFpGn_QQ76A95K1oflXEoITRvYUGjSsxhLo42CVzaSzbLH_vPK2eTa0wwz7735eFV1xeiGUU2_MiE6LTu1aSgTm042jeRn1QXTXNVSSfmh5AVSr5jz6lPOL5Qqrqm6qP4-IuQxwkBc8B4TRouZQM4hzyREsodpCnFHdglimJGMy2zTOGWy5LW8hegyzOTpgYQ97DAdCZR-zmR-RvJY0M8HLEo3S54TDAEiuRvGVMSDJb9xF8b4ufroYcj45S1eVn_uvj_d_qy3v37c395sa8ulnusetWYaGwltL5gUHbaUt41izgumpLcOeIuspxad6xrr0PYNR90p4SUoxy-r65PuoewZy_IYTYRkQzYjBDOEPkE6msOSTBzWMC19NqJthWoLWZzIr8cl9GZK5eCCZ9SsHph3D8zqgTl5UGjfTrQQ_Zj2cBjT4MwMx_IDXz66Duf_VfgHqFOTUw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region</title><source>Taylor and Francis Science and Technology Collection</source><creator>Alibegovic, G. ; Schut, A.G.T. ; Wardell-Johnson, G.W. ; Robinson, T.P.</creator><creatorcontrib>Alibegovic, G. ; Schut, A.G.T. ; Wardell-Johnson, G.W. ; Robinson, T.P.</creatorcontrib><description>Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences, combined with a supervised classification, allowed differentiation of granite from other land covers on five GOs across the rainfall gradient. This methodology provided high classification accuracy (Overall Kappa ranged from 0.83 to 0.91) irrespective of location. Therefore, there is potential to use these methods to compile a more complete GO inventory over the region.</description><identifier>ISSN: 1449-8596</identifier><identifier>EISSN: 1836-5655</identifier><identifier>DOI: 10.1080/14498596.2014.952253</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>band ratios ; biodiversity ; climate-change ; cover ; granite outcrops ; habitat refuges ; Landsat TM ; machine learning algorithms ; reflection radiometer aster ; refugia ; spaceborne thermal emission ; vegetation ; vegetation indices ; western-australia</subject><ispartof>Journal of spatial science, 2015-01, Vol.60 (1), p.37-49</ispartof><rights>2014 Mapping Sciences Institute, Australia and Surveying and Spatial Sciences Institute 2014</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3</citedby><cites>FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids></links><search><creatorcontrib>Alibegovic, G.</creatorcontrib><creatorcontrib>Schut, A.G.T.</creatorcontrib><creatorcontrib>Wardell-Johnson, G.W.</creatorcontrib><creatorcontrib>Robinson, T.P.</creatorcontrib><title>Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region</title><title>Journal of spatial science</title><description>Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences, combined with a supervised classification, allowed differentiation of granite from other land covers on five GOs across the rainfall gradient. This methodology provided high classification accuracy (Overall Kappa ranged from 0.83 to 0.91) irrespective of location. Therefore, there is potential to use these methods to compile a more complete GO inventory over the region.</description><subject>band ratios</subject><subject>biodiversity</subject><subject>climate-change</subject><subject>cover</subject><subject>granite outcrops</subject><subject>habitat refuges</subject><subject>Landsat TM</subject><subject>machine learning algorithms</subject><subject>reflection radiometer aster</subject><subject>refugia</subject><subject>spaceborne thermal emission</subject><subject>vegetation</subject><subject>vegetation indices</subject><subject>western-australia</subject><issn>1449-8596</issn><issn>1836-5655</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3DAQNaGFpGn_QQ76A95K1oflXEoITRvYUGjSsxhLo42CVzaSzbLH_vPK2eTa0wwz7735eFV1xeiGUU2_MiE6LTu1aSgTm042jeRn1QXTXNVSSfmh5AVSr5jz6lPOL5Qqrqm6qP4-IuQxwkBc8B4TRouZQM4hzyREsodpCnFHdglimJGMy2zTOGWy5LW8hegyzOTpgYQ97DAdCZR-zmR-RvJY0M8HLEo3S54TDAEiuRvGVMSDJb9xF8b4ufroYcj45S1eVn_uvj_d_qy3v37c395sa8ulnusetWYaGwltL5gUHbaUt41izgumpLcOeIuspxad6xrr0PYNR90p4SUoxy-r65PuoewZy_IYTYRkQzYjBDOEPkE6msOSTBzWMC19NqJthWoLWZzIr8cl9GZK5eCCZ9SsHph3D8zqgTl5UGjfTrQQ_Zj2cBjT4MwMx_IDXz66Duf_VfgHqFOTUw</recordid><startdate>20150102</startdate><enddate>20150102</enddate><creator>Alibegovic, G.</creator><creator>Schut, A.G.T.</creator><creator>Wardell-Johnson, G.W.</creator><creator>Robinson, T.P.</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>QVL</scope></search><sort><creationdate>20150102</creationdate><title>Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region</title><author>Alibegovic, G. ; Schut, A.G.T. ; Wardell-Johnson, G.W. ; Robinson, T.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>band ratios</topic><topic>biodiversity</topic><topic>climate-change</topic><topic>cover</topic><topic>granite outcrops</topic><topic>habitat refuges</topic><topic>Landsat TM</topic><topic>machine learning algorithms</topic><topic>reflection radiometer aster</topic><topic>refugia</topic><topic>spaceborne thermal emission</topic><topic>vegetation</topic><topic>vegetation indices</topic><topic>western-australia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alibegovic, G.</creatorcontrib><creatorcontrib>Schut, A.G.T.</creatorcontrib><creatorcontrib>Wardell-Johnson, G.W.</creatorcontrib><creatorcontrib>Robinson, T.P.</creatorcontrib><collection>CrossRef</collection><collection>NARCIS:Publications</collection><jtitle>Journal of spatial science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alibegovic, G.</au><au>Schut, A.G.T.</au><au>Wardell-Johnson, G.W.</au><au>Robinson, T.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region</atitle><jtitle>Journal of spatial science</jtitle><date>2015-01-02</date><risdate>2015</risdate><volume>60</volume><issue>1</issue><spage>37</spage><epage>49</epage><pages>37-49</pages><issn>1449-8596</issn><eissn>1836-5655</eissn><abstract>Knowledge of the location and extent of granite outcrops (GOs) in the Southwest Australian Floristic Region is important to understand their role as refugia. We present a methodology to map GOs using biannual Landsat TM imagery. An adaptive vegetation cover mask capitalising on seasonal differences, combined with a supervised classification, allowed differentiation of granite from other land covers on five GOs across the rainfall gradient. This methodology provided high classification accuracy (Overall Kappa ranged from 0.83 to 0.91) irrespective of location. Therefore, there is potential to use these methods to compile a more complete GO inventory over the region.</abstract><pub>Taylor & Francis</pub><doi>10.1080/14498596.2014.952253</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1449-8596 |
ispartof | Journal of spatial science, 2015-01, Vol.60 (1), p.37-49 |
issn | 1449-8596 1836-5655 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_477467 |
source | Taylor and Francis Science and Technology Collection |
subjects | band ratios biodiversity climate-change cover granite outcrops habitat refuges Landsat TM machine learning algorithms reflection radiometer aster refugia spaceborne thermal emission vegetation vegetation indices western-australia |
title | Seasonal differences assist in mapping granite outcrops using Landsat TM imagery across the Southwest Australian Floristic Region |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wageningen_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seasonal%20differences%20assist%20in%20mapping%20granite%20outcrops%20using%20Landsat%20TM%20imagery%20across%20the%20Southwest%20Australian%20Floristic%20Region&rft.jtitle=Journal%20of%20spatial%20science&rft.au=Alibegovic,%20G.&rft.date=2015-01-02&rft.volume=60&rft.issue=1&rft.spage=37&rft.epage=49&rft.pages=37-49&rft.issn=1449-8596&rft.eissn=1836-5655&rft_id=info:doi/10.1080/14498596.2014.952253&rft_dat=%3Cwageningen_cross%3Eoai_library_wur_nl_wurpubs_477467%3C/wageningen_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-be8818e25a7b41549e7037261df4165fcda37e1b0cedd92cdecb23e8964f5a6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |