Loading…
Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics
RATIONALE Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable...
Saved in:
Published in: | Rapid communications in mass spectrometry 2013-11, Vol.27 (21), p.2425-2431 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3 |
container_end_page | 2431 |
container_issue | 21 |
container_start_page | 2425 |
container_title | Rapid communications in mass spectrometry |
container_volume | 27 |
creator | Shahaf, Nir Franceschi, Pietro Arapitsas, Panagiotis Rogachev, Ilana Vrhovsek, Urska Wehrens, Ron |
description | RATIONALE
Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high‐throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far.
METHODS
A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time‐of‐flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high‐throughput manner.
RESULTS
We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits.
CONCLUSIONS
Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high‐throughput peak annotation pipelines for database searches. Copyright © 2013 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/rcm.6705 |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_479070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089671361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEoktB4gmQJS5c0tpxvI65oS0U0FIqBKrUizVxJluXxN7aTtt9Bx4aL12KhIQ4jf_85vPM5ymK54weMEqrw2DGg7mk4kExY1TJklacPSxmVAlW1kw1e8WTGC8pZUxU9HGxV9WZ4krNih8L72IKk0nWrQiQEWIkI0KcAo7oEsEQfCB524NBkjyx4zr4ayQwJT9CsoaAcz7lVVYi1pHBXk22I-YibO_9KsD6YnP4Sziu0aR8jClsSAsRu_xWgtYPfrQmPi0e9TBEfLaL-8W3d2-_Lt6Xy8_HHxZvlqWpJROlUawTRjAhqlp0vRTIG5AdVxX0nVHG1EBN33ZzqVrTC4UVVG0_73kzr1sUhu8Xr-90b2CFLjeOTjsIxkbtwerBtgHCRt9MQbthG9ZTG3UtFZU0J7-6S842XE0Ykx5tNDgM4NBPUbN5rpFWUlX_R-ua10xwLjL68i_00k_BZRcylTtrqGzYH0ETfIwBe70OdtzWyqjeToLOk6C3k5DRFzvBqR2xuwd_f30Gyp0JdsDNP4X0l8WnneCOtzHh7T0P4XvmuBT67ORYn56fnZ58XJ7rI_4TcA7R2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439280781</pqid></control><display><type>article</type><title>Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Shahaf, Nir ; Franceschi, Pietro ; Arapitsas, Panagiotis ; Rogachev, Ilana ; Vrhovsek, Urska ; Wehrens, Ron</creator><creatorcontrib>Shahaf, Nir ; Franceschi, Pietro ; Arapitsas, Panagiotis ; Rogachev, Ilana ; Vrhovsek, Urska ; Wehrens, Ron</creatorcontrib><description>RATIONALE
Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high‐throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far.
METHODS
A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time‐of‐flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high‐throughput manner.
RESULTS
We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits.
CONCLUSIONS
Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high‐throughput peak annotation pipelines for database searches. Copyright © 2013 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.6705</identifier><identifier>PMID: 24097399</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>accuracy ; Annotations ; Chromatography, Liquid - methods ; Construction ; Error analysis ; Errors ; Mass spectrometry ; Mass Spectrometry - methods ; Mathematical models ; Metabolomics - methods ; Models, Statistical ; molecules ; precision ; recalibration ; Reproducibility of Results ; sample ; Searching</subject><ispartof>Rapid communications in mass spectrometry, 2013-11, Vol.27 (21), p.2425-2431</ispartof><rights>Copyright © 2013 John Wiley & Sons, Ltd.</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3</citedby><cites>FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24097399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahaf, Nir</creatorcontrib><creatorcontrib>Franceschi, Pietro</creatorcontrib><creatorcontrib>Arapitsas, Panagiotis</creatorcontrib><creatorcontrib>Rogachev, Ilana</creatorcontrib><creatorcontrib>Vrhovsek, Urska</creatorcontrib><creatorcontrib>Wehrens, Ron</creatorcontrib><title>Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun. Mass Spectrom</addtitle><description>RATIONALE
Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high‐throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far.
METHODS
A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time‐of‐flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high‐throughput manner.
RESULTS
We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits.
CONCLUSIONS
Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high‐throughput peak annotation pipelines for database searches. Copyright © 2013 John Wiley & Sons, Ltd.</description><subject>accuracy</subject><subject>Annotations</subject><subject>Chromatography, Liquid - methods</subject><subject>Construction</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mathematical models</subject><subject>Metabolomics - methods</subject><subject>Models, Statistical</subject><subject>molecules</subject><subject>precision</subject><subject>recalibration</subject><subject>Reproducibility of Results</subject><subject>sample</subject><subject>Searching</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFks9u1DAQxiMEoktB4gmQJS5c0tpxvI65oS0U0FIqBKrUizVxJluXxN7aTtt9Bx4aL12KhIQ4jf_85vPM5ymK54weMEqrw2DGg7mk4kExY1TJklacPSxmVAlW1kw1e8WTGC8pZUxU9HGxV9WZ4krNih8L72IKk0nWrQiQEWIkI0KcAo7oEsEQfCB524NBkjyx4zr4ayQwJT9CsoaAcz7lVVYi1pHBXk22I-YibO_9KsD6YnP4Sziu0aR8jClsSAsRu_xWgtYPfrQmPi0e9TBEfLaL-8W3d2-_Lt6Xy8_HHxZvlqWpJROlUawTRjAhqlp0vRTIG5AdVxX0nVHG1EBN33ZzqVrTC4UVVG0_73kzr1sUhu8Xr-90b2CFLjeOTjsIxkbtwerBtgHCRt9MQbthG9ZTG3UtFZU0J7-6S842XE0Ykx5tNDgM4NBPUbN5rpFWUlX_R-ua10xwLjL68i_00k_BZRcylTtrqGzYH0ETfIwBe70OdtzWyqjeToLOk6C3k5DRFzvBqR2xuwd_f30Gyp0JdsDNP4X0l8WnneCOtzHh7T0P4XvmuBT67ORYn56fnZ58XJ7rI_4TcA7R2Q</recordid><startdate>20131115</startdate><enddate>20131115</enddate><creator>Shahaf, Nir</creator><creator>Franceschi, Pietro</creator><creator>Arapitsas, Panagiotis</creator><creator>Rogachev, Ilana</creator><creator>Vrhovsek, Urska</creator><creator>Wehrens, Ron</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>20131115</creationdate><title>Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics</title><author>Shahaf, Nir ; Franceschi, Pietro ; Arapitsas, Panagiotis ; Rogachev, Ilana ; Vrhovsek, Urska ; Wehrens, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>accuracy</topic><topic>Annotations</topic><topic>Chromatography, Liquid - methods</topic><topic>Construction</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mathematical models</topic><topic>Metabolomics - methods</topic><topic>Models, Statistical</topic><topic>molecules</topic><topic>precision</topic><topic>recalibration</topic><topic>Reproducibility of Results</topic><topic>sample</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahaf, Nir</creatorcontrib><creatorcontrib>Franceschi, Pietro</creatorcontrib><creatorcontrib>Arapitsas, Panagiotis</creatorcontrib><creatorcontrib>Rogachev, Ilana</creatorcontrib><creatorcontrib>Vrhovsek, Urska</creatorcontrib><creatorcontrib>Wehrens, Ron</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahaf, Nir</au><au>Franceschi, Pietro</au><au>Arapitsas, Panagiotis</au><au>Rogachev, Ilana</au><au>Vrhovsek, Urska</au><au>Wehrens, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun. Mass Spectrom</addtitle><date>2013-11-15</date><risdate>2013</risdate><volume>27</volume><issue>21</issue><spage>2425</spage><epage>2431</epage><pages>2425-2431</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>RATIONALE
Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high‐throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far.
METHODS
A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time‐of‐flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high‐throughput manner.
RESULTS
We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits.
CONCLUSIONS
Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high‐throughput peak annotation pipelines for database searches. Copyright © 2013 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24097399</pmid><doi>10.1002/rcm.6705</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-4198 |
ispartof | Rapid communications in mass spectrometry, 2013-11, Vol.27 (21), p.2425-2431 |
issn | 0951-4198 1097-0231 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_479070 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | accuracy Annotations Chromatography, Liquid - methods Construction Error analysis Errors Mass spectrometry Mass Spectrometry - methods Mathematical models Metabolomics - methods Models, Statistical molecules precision recalibration Reproducibility of Results sample Searching |
title | Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20a%20mass%20measurement%20error%20surface%20to%20improve%20automatic%20annotations%20in%20liquid%20chromatography/mass%20spectrometry%20based%20metabolomics&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Shahaf,%20Nir&rft.date=2013-11-15&rft.volume=27&rft.issue=21&rft.spage=2425&rft.epage=2431&rft.pages=2425-2431&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.6705&rft_dat=%3Cproquest_wagen%3E3089671361%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1439280781&rft_id=info:pmid/24097399&rfr_iscdi=true |