Loading…

Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics

RATIONALE Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable...

Full description

Saved in:
Bibliographic Details
Published in:Rapid communications in mass spectrometry 2013-11, Vol.27 (21), p.2425-2431
Main Authors: Shahaf, Nir, Franceschi, Pietro, Arapitsas, Panagiotis, Rogachev, Ilana, Vrhovsek, Urska, Wehrens, Ron
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3
cites cdi_FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3
container_end_page 2431
container_issue 21
container_start_page 2425
container_title Rapid communications in mass spectrometry
container_volume 27
creator Shahaf, Nir
Franceschi, Pietro
Arapitsas, Panagiotis
Rogachev, Ilana
Vrhovsek, Urska
Wehrens, Ron
description RATIONALE Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high‐throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far. METHODS A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time‐of‐flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high‐throughput manner. RESULTS We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits. CONCLUSIONS Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high‐throughput peak annotation pipelines for database searches. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rcm.6705
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_479070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089671361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEoktB4gmQJS5c0tpxvI65oS0U0FIqBKrUizVxJluXxN7aTtt9Bx4aL12KhIQ4jf_85vPM5ymK54weMEqrw2DGg7mk4kExY1TJklacPSxmVAlW1kw1e8WTGC8pZUxU9HGxV9WZ4krNih8L72IKk0nWrQiQEWIkI0KcAo7oEsEQfCB524NBkjyx4zr4ayQwJT9CsoaAcz7lVVYi1pHBXk22I-YibO_9KsD6YnP4Sziu0aR8jClsSAsRu_xWgtYPfrQmPi0e9TBEfLaL-8W3d2-_Lt6Xy8_HHxZvlqWpJROlUawTRjAhqlp0vRTIG5AdVxX0nVHG1EBN33ZzqVrTC4UVVG0_73kzr1sUhu8Xr-90b2CFLjeOTjsIxkbtwerBtgHCRt9MQbthG9ZTG3UtFZU0J7-6S842XE0Ykx5tNDgM4NBPUbN5rpFWUlX_R-ua10xwLjL68i_00k_BZRcylTtrqGzYH0ETfIwBe70OdtzWyqjeToLOk6C3k5DRFzvBqR2xuwd_f30Gyp0JdsDNP4X0l8WnneCOtzHh7T0P4XvmuBT67ORYn56fnZ58XJ7rI_4TcA7R2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439280781</pqid></control><display><type>article</type><title>Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Shahaf, Nir ; Franceschi, Pietro ; Arapitsas, Panagiotis ; Rogachev, Ilana ; Vrhovsek, Urska ; Wehrens, Ron</creator><creatorcontrib>Shahaf, Nir ; Franceschi, Pietro ; Arapitsas, Panagiotis ; Rogachev, Ilana ; Vrhovsek, Urska ; Wehrens, Ron</creatorcontrib><description>RATIONALE Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high‐throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far. METHODS A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time‐of‐flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high‐throughput manner. RESULTS We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits. CONCLUSIONS Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high‐throughput peak annotation pipelines for database searches. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0951-4198</identifier><identifier>EISSN: 1097-0231</identifier><identifier>DOI: 10.1002/rcm.6705</identifier><identifier>PMID: 24097399</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>accuracy ; Annotations ; Chromatography, Liquid - methods ; Construction ; Error analysis ; Errors ; Mass spectrometry ; Mass Spectrometry - methods ; Mathematical models ; Metabolomics - methods ; Models, Statistical ; molecules ; precision ; recalibration ; Reproducibility of Results ; sample ; Searching</subject><ispartof>Rapid communications in mass spectrometry, 2013-11, Vol.27 (21), p.2425-2431</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3</citedby><cites>FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24097399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shahaf, Nir</creatorcontrib><creatorcontrib>Franceschi, Pietro</creatorcontrib><creatorcontrib>Arapitsas, Panagiotis</creatorcontrib><creatorcontrib>Rogachev, Ilana</creatorcontrib><creatorcontrib>Vrhovsek, Urska</creatorcontrib><creatorcontrib>Wehrens, Ron</creatorcontrib><title>Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics</title><title>Rapid communications in mass spectrometry</title><addtitle>Rapid Commun. Mass Spectrom</addtitle><description>RATIONALE Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high‐throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far. METHODS A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time‐of‐flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high‐throughput manner. RESULTS We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits. CONCLUSIONS Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high‐throughput peak annotation pipelines for database searches. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>accuracy</subject><subject>Annotations</subject><subject>Chromatography, Liquid - methods</subject><subject>Construction</subject><subject>Error analysis</subject><subject>Errors</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Mathematical models</subject><subject>Metabolomics - methods</subject><subject>Models, Statistical</subject><subject>molecules</subject><subject>precision</subject><subject>recalibration</subject><subject>Reproducibility of Results</subject><subject>sample</subject><subject>Searching</subject><issn>0951-4198</issn><issn>1097-0231</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFks9u1DAQxiMEoktB4gmQJS5c0tpxvI65oS0U0FIqBKrUizVxJluXxN7aTtt9Bx4aL12KhIQ4jf_85vPM5ymK54weMEqrw2DGg7mk4kExY1TJklacPSxmVAlW1kw1e8WTGC8pZUxU9HGxV9WZ4krNih8L72IKk0nWrQiQEWIkI0KcAo7oEsEQfCB524NBkjyx4zr4ayQwJT9CsoaAcz7lVVYi1pHBXk22I-YibO_9KsD6YnP4Sziu0aR8jClsSAsRu_xWgtYPfrQmPi0e9TBEfLaL-8W3d2-_Lt6Xy8_HHxZvlqWpJROlUawTRjAhqlp0vRTIG5AdVxX0nVHG1EBN33ZzqVrTC4UVVG0_73kzr1sUhu8Xr-90b2CFLjeOTjsIxkbtwerBtgHCRt9MQbthG9ZTG3UtFZU0J7-6S842XE0Ykx5tNDgM4NBPUbN5rpFWUlX_R-ua10xwLjL68i_00k_BZRcylTtrqGzYH0ETfIwBe70OdtzWyqjeToLOk6C3k5DRFzvBqR2xuwd_f30Gyp0JdsDNP4X0l8WnneCOtzHh7T0P4XvmuBT67ORYn56fnZ58XJ7rI_4TcA7R2Q</recordid><startdate>20131115</startdate><enddate>20131115</enddate><creator>Shahaf, Nir</creator><creator>Franceschi, Pietro</creator><creator>Arapitsas, Panagiotis</creator><creator>Rogachev, Ilana</creator><creator>Vrhovsek, Urska</creator><creator>Wehrens, Ron</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>20131115</creationdate><title>Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics</title><author>Shahaf, Nir ; Franceschi, Pietro ; Arapitsas, Panagiotis ; Rogachev, Ilana ; Vrhovsek, Urska ; Wehrens, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>accuracy</topic><topic>Annotations</topic><topic>Chromatography, Liquid - methods</topic><topic>Construction</topic><topic>Error analysis</topic><topic>Errors</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Mathematical models</topic><topic>Metabolomics - methods</topic><topic>Models, Statistical</topic><topic>molecules</topic><topic>precision</topic><topic>recalibration</topic><topic>Reproducibility of Results</topic><topic>sample</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shahaf, Nir</creatorcontrib><creatorcontrib>Franceschi, Pietro</creatorcontrib><creatorcontrib>Arapitsas, Panagiotis</creatorcontrib><creatorcontrib>Rogachev, Ilana</creatorcontrib><creatorcontrib>Vrhovsek, Urska</creatorcontrib><creatorcontrib>Wehrens, Ron</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>Rapid communications in mass spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shahaf, Nir</au><au>Franceschi, Pietro</au><au>Arapitsas, Panagiotis</au><au>Rogachev, Ilana</au><au>Vrhovsek, Urska</au><au>Wehrens, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics</atitle><jtitle>Rapid communications in mass spectrometry</jtitle><addtitle>Rapid Commun. Mass Spectrom</addtitle><date>2013-11-15</date><risdate>2013</risdate><volume>27</volume><issue>21</issue><spage>2425</spage><epage>2431</epage><pages>2425-2431</pages><issn>0951-4198</issn><eissn>1097-0231</eissn><abstract>RATIONALE Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high‐throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far. METHODS A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time‐of‐flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high‐throughput manner. RESULTS We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits. CONCLUSIONS Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high‐throughput peak annotation pipelines for database searches. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24097399</pmid><doi>10.1002/rcm.6705</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-4198
ispartof Rapid communications in mass spectrometry, 2013-11, Vol.27 (21), p.2425-2431
issn 0951-4198
1097-0231
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_479070
source Wiley-Blackwell Read & Publish Collection
subjects accuracy
Annotations
Chromatography, Liquid - methods
Construction
Error analysis
Errors
Mass spectrometry
Mass Spectrometry - methods
Mathematical models
Metabolomics - methods
Models, Statistical
molecules
precision
recalibration
Reproducibility of Results
sample
Searching
title Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructing%20a%20mass%20measurement%20error%20surface%20to%20improve%20automatic%20annotations%20in%20liquid%20chromatography/mass%20spectrometry%20based%20metabolomics&rft.jtitle=Rapid%20communications%20in%20mass%20spectrometry&rft.au=Shahaf,%20Nir&rft.date=2013-11-15&rft.volume=27&rft.issue=21&rft.spage=2425&rft.epage=2431&rft.pages=2425-2431&rft.issn=0951-4198&rft.eissn=1097-0231&rft_id=info:doi/10.1002/rcm.6705&rft_dat=%3Cproquest_wagen%3E3089671361%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4715-c91d5c5155245df75e38a7d392afdc9cc4a0cfbd679bcf59e2a2bf6f3864be5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1439280781&rft_id=info:pmid/24097399&rfr_iscdi=true