Loading…
Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction
Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than t...
Saved in:
Published in: | Environmental science & technology 2014-11, Vol.48 (22), p.13412-13418 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3 |
container_end_page | 13418 |
container_issue | 22 |
container_start_page | 13412 |
container_title | Environmental science & technology |
container_volume | 48 |
creator | Zimmermann, Yannick-Serge Niewersch, Claudia Lenz, Markus Kül, Zöhre Zohra Corvini, Philippe F.-X Schäffer, Andreas Wintgens, Thomas |
description | Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper–indium−gallium− selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m–2 CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by >60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥0.6), it may be applied in hydrometallurgy typically using acidic conditions. |
doi_str_mv | 10.1021/es502695k |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_479215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660394881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxi0EokvhwAsgSwgJDgE7_pOktypqy0orqApI3CzHcVoXx97aDktvnHgB3pAnwWGXFYILp7E0v2_mm_EA8BijlxiV-JWODJW8YZ_ugAVmJSpYzfBdsEAIk6Ih_OMBeBDjNUKoJKi-Dw5KRrKQ8wX4dqHVrbLGXUI_wKXrzTTC0-BH2C7P3sHzK5_8Z2-TNAq22tp4BM990i4ZaWdF68fOuFl-rExfXOhoYpIuwTfS-cHYFGQy3sGNSVdwZW4m0__4-n37gCdfclrN-Yfg3iBt1I928RB8OD15374uVm_Plu3xqpC0oamQvWZlxTUlNUOI10PPm5JQyiTtcV0RVqGe66YitUJIcsWw5p1SXYmZqgbWkUNwtK27kZd6tq2dcDIoE4WXRljTBRluxWYKwtk5rKcuClo1uUIWP9-K18HfTDomMZqo8lKk036KAnOOSEPrGv8HWvKM5zky-vQv9NpPweUtzFSFKc_dM_ViS6ngYwx6EOtgxtkrRmI-ArE_gsw-2VWculH3e_L3r2fg2Q6QUUk7BOnmDey5BlHc_Bp4x0kV_3D1T8OfgnTHVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627146792</pqid></control><display><type>article</type><title>Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zimmermann, Yannick-Serge ; Niewersch, Claudia ; Lenz, Markus ; Kül, Zöhre Zohra ; Corvini, Philippe F.-X ; Schäffer, Andreas ; Wintgens, Thomas</creator><creatorcontrib>Zimmermann, Yannick-Serge ; Niewersch, Claudia ; Lenz, Markus ; Kül, Zöhre Zohra ; Corvini, Philippe F.-X ; Schäffer, Andreas ; Wintgens, Thomas</creatorcontrib><description>Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper–indium−gallium− selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (<3 bar). Retentates were then subjected to a further selective liquid–liquid extraction (LLE). Even at very acidic pH indium was retained to >98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m–2 CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by >60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥0.6), it may be applied in hydrometallurgy typically using acidic conditions.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es502695k</identifier><identifier>PMID: 25310266</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acids - chemistry ; Applied sciences ; Consumer goods ; electronic waste ; environment ; Environmental science ; Exact sciences and technology ; Filtration - methods ; Gallium - chemistry ; Hydrogen-Ion Concentration ; Indium ; Indium - chemistry ; Industry - economics ; Ions ; Liquid-Liquid Extraction - methods ; management ; mechanisms ; Membranes ; Membranes, Artificial ; Metalloids - analysis ; Metalloids - economics ; Metals ; Nanotechnology - methods ; nf membranes ; Other wastes and particular components of wastes ; Photochemistry ; Photovoltaic cells ; Pollution ; Pressure ; recovery ; Recycling ; rejection ; Risk assessment ; Selenium - chemistry ; solutes ; Solvents - chemistry ; Wastes ; water</subject><ispartof>Environmental science & technology, 2014-11, Vol.48 (22), p.13412-13418</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 18, 2014</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3</citedby><cites>FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29041915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25310266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmermann, Yannick-Serge</creatorcontrib><creatorcontrib>Niewersch, Claudia</creatorcontrib><creatorcontrib>Lenz, Markus</creatorcontrib><creatorcontrib>Kül, Zöhre Zohra</creatorcontrib><creatorcontrib>Corvini, Philippe F.-X</creatorcontrib><creatorcontrib>Schäffer, Andreas</creatorcontrib><creatorcontrib>Wintgens, Thomas</creatorcontrib><title>Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper–indium−gallium− selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (<3 bar). Retentates were then subjected to a further selective liquid–liquid extraction (LLE). Even at very acidic pH indium was retained to >98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m–2 CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by >60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥0.6), it may be applied in hydrometallurgy typically using acidic conditions.</description><subject>Acids - chemistry</subject><subject>Applied sciences</subject><subject>Consumer goods</subject><subject>electronic waste</subject><subject>environment</subject><subject>Environmental science</subject><subject>Exact sciences and technology</subject><subject>Filtration - methods</subject><subject>Gallium - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Indium</subject><subject>Indium - chemistry</subject><subject>Industry - economics</subject><subject>Ions</subject><subject>Liquid-Liquid Extraction - methods</subject><subject>management</subject><subject>mechanisms</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Metalloids - analysis</subject><subject>Metalloids - economics</subject><subject>Metals</subject><subject>Nanotechnology - methods</subject><subject>nf membranes</subject><subject>Other wastes and particular components of wastes</subject><subject>Photochemistry</subject><subject>Photovoltaic cells</subject><subject>Pollution</subject><subject>Pressure</subject><subject>recovery</subject><subject>Recycling</subject><subject>rejection</subject><subject>Risk assessment</subject><subject>Selenium - chemistry</subject><subject>solutes</subject><subject>Solvents - chemistry</subject><subject>Wastes</subject><subject>water</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNks9u1DAQxi0EokvhwAsgSwgJDgE7_pOktypqy0orqApI3CzHcVoXx97aDktvnHgB3pAnwWGXFYILp7E0v2_mm_EA8BijlxiV-JWODJW8YZ_ugAVmJSpYzfBdsEAIk6Ih_OMBeBDjNUKoJKi-Dw5KRrKQ8wX4dqHVrbLGXUI_wKXrzTTC0-BH2C7P3sHzK5_8Z2-TNAq22tp4BM990i4ZaWdF68fOuFl-rExfXOhoYpIuwTfS-cHYFGQy3sGNSVdwZW4m0__4-n37gCdfclrN-Yfg3iBt1I928RB8OD15374uVm_Plu3xqpC0oamQvWZlxTUlNUOI10PPm5JQyiTtcV0RVqGe66YitUJIcsWw5p1SXYmZqgbWkUNwtK27kZd6tq2dcDIoE4WXRljTBRluxWYKwtk5rKcuClo1uUIWP9-K18HfTDomMZqo8lKk036KAnOOSEPrGv8HWvKM5zky-vQv9NpPweUtzFSFKc_dM_ViS6ngYwx6EOtgxtkrRmI-ArE_gsw-2VWculH3e_L3r2fg2Q6QUUk7BOnmDey5BlHc_Bp4x0kV_3D1T8OfgnTHVA</recordid><startdate>20141118</startdate><enddate>20141118</enddate><creator>Zimmermann, Yannick-Serge</creator><creator>Niewersch, Claudia</creator><creator>Lenz, Markus</creator><creator>Kül, Zöhre Zohra</creator><creator>Corvini, Philippe F.-X</creator><creator>Schäffer, Andreas</creator><creator>Wintgens, Thomas</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7U1</scope><scope>7U2</scope><scope>QVL</scope></search><sort><creationdate>20141118</creationdate><title>Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction</title><author>Zimmermann, Yannick-Serge ; Niewersch, Claudia ; Lenz, Markus ; Kül, Zöhre Zohra ; Corvini, Philippe F.-X ; Schäffer, Andreas ; Wintgens, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids - chemistry</topic><topic>Applied sciences</topic><topic>Consumer goods</topic><topic>electronic waste</topic><topic>environment</topic><topic>Environmental science</topic><topic>Exact sciences and technology</topic><topic>Filtration - methods</topic><topic>Gallium - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Indium</topic><topic>Indium - chemistry</topic><topic>Industry - economics</topic><topic>Ions</topic><topic>Liquid-Liquid Extraction - methods</topic><topic>management</topic><topic>mechanisms</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Metalloids - analysis</topic><topic>Metalloids - economics</topic><topic>Metals</topic><topic>Nanotechnology - methods</topic><topic>nf membranes</topic><topic>Other wastes and particular components of wastes</topic><topic>Photochemistry</topic><topic>Photovoltaic cells</topic><topic>Pollution</topic><topic>Pressure</topic><topic>recovery</topic><topic>Recycling</topic><topic>rejection</topic><topic>Risk assessment</topic><topic>Selenium - chemistry</topic><topic>solutes</topic><topic>Solvents - chemistry</topic><topic>Wastes</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmermann, Yannick-Serge</creatorcontrib><creatorcontrib>Niewersch, Claudia</creatorcontrib><creatorcontrib>Lenz, Markus</creatorcontrib><creatorcontrib>Kül, Zöhre Zohra</creatorcontrib><creatorcontrib>Corvini, Philippe F.-X</creatorcontrib><creatorcontrib>Schäffer, Andreas</creatorcontrib><creatorcontrib>Wintgens, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>NARCIS:Publications</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmermann, Yannick-Serge</au><au>Niewersch, Claudia</au><au>Lenz, Markus</au><au>Kül, Zöhre Zohra</au><au>Corvini, Philippe F.-X</au><au>Schäffer, Andreas</au><au>Wintgens, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-11-18</date><risdate>2014</risdate><volume>48</volume><issue>22</issue><spage>13412</spage><epage>13418</epage><pages>13412-13418</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper–indium−gallium− selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (<3 bar). Retentates were then subjected to a further selective liquid–liquid extraction (LLE). Even at very acidic pH indium was retained to >98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m–2 CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by >60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥0.6), it may be applied in hydrometallurgy typically using acidic conditions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25310266</pmid><doi>10.1021/es502695k</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2014-11, Vol.48 (22), p.13412-13418 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_479215 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Acids - chemistry Applied sciences Consumer goods electronic waste environment Environmental science Exact sciences and technology Filtration - methods Gallium - chemistry Hydrogen-Ion Concentration Indium Indium - chemistry Industry - economics Ions Liquid-Liquid Extraction - methods management mechanisms Membranes Membranes, Artificial Metalloids - analysis Metalloids - economics Metals Nanotechnology - methods nf membranes Other wastes and particular components of wastes Photochemistry Photovoltaic cells Pollution Pressure recovery Recycling rejection Risk assessment Selenium - chemistry solutes Solvents - chemistry Wastes water |
title | Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recycling%20of%20Indium%20From%20CIGS%20Photovoltaic%20Cells:%20Potential%20of%20Combining%20Acid-Resistant%20Nanofiltration%20with%20Liquid%E2%80%93Liquid%20Extraction&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zimmermann,%20Yannick-Serge&rft.date=2014-11-18&rft.volume=48&rft.issue=22&rft.spage=13412&rft.epage=13418&rft.pages=13412-13418&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es502695k&rft_dat=%3Cproquest_wagen%3E1660394881%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627146792&rft_id=info:pmid/25310266&rfr_iscdi=true |