Loading…

Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction

Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than t...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2014-11, Vol.48 (22), p.13412-13418
Main Authors: Zimmermann, Yannick-Serge, Niewersch, Claudia, Lenz, Markus, Kül, Zöhre Zohra, Corvini, Philippe F.-X, Schäffer, Andreas, Wintgens, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3
cites cdi_FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3
container_end_page 13418
container_issue 22
container_start_page 13412
container_title Environmental science & technology
container_volume 48
creator Zimmermann, Yannick-Serge
Niewersch, Claudia
Lenz, Markus
Kül, Zöhre Zohra
Corvini, Philippe F.-X
Schäffer, Andreas
Wintgens, Thomas
description Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper–indium−gallium− selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)­phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m–2 CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by >60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥0.6), it may be applied in hydrometallurgy typically using acidic conditions.
doi_str_mv 10.1021/es502695k
format article
fullrecord <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_479215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1660394881</sourcerecordid><originalsourceid>FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxi0EokvhwAsgSwgJDgE7_pOktypqy0orqApI3CzHcVoXx97aDktvnHgB3pAnwWGXFYILp7E0v2_mm_EA8BijlxiV-JWODJW8YZ_ugAVmJSpYzfBdsEAIk6Ih_OMBeBDjNUKoJKi-Dw5KRrKQ8wX4dqHVrbLGXUI_wKXrzTTC0-BH2C7P3sHzK5_8Z2-TNAq22tp4BM990i4ZaWdF68fOuFl-rExfXOhoYpIuwTfS-cHYFGQy3sGNSVdwZW4m0__4-n37gCdfclrN-Yfg3iBt1I928RB8OD15374uVm_Plu3xqpC0oamQvWZlxTUlNUOI10PPm5JQyiTtcV0RVqGe66YitUJIcsWw5p1SXYmZqgbWkUNwtK27kZd6tq2dcDIoE4WXRljTBRluxWYKwtk5rKcuClo1uUIWP9-K18HfTDomMZqo8lKk036KAnOOSEPrGv8HWvKM5zky-vQv9NpPweUtzFSFKc_dM_ViS6ngYwx6EOtgxtkrRmI-ArE_gsw-2VWculH3e_L3r2fg2Q6QUUk7BOnmDey5BlHc_Bp4x0kV_3D1T8OfgnTHVA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627146792</pqid></control><display><type>article</type><title>Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zimmermann, Yannick-Serge ; Niewersch, Claudia ; Lenz, Markus ; Kül, Zöhre Zohra ; Corvini, Philippe F.-X ; Schäffer, Andreas ; Wintgens, Thomas</creator><creatorcontrib>Zimmermann, Yannick-Serge ; Niewersch, Claudia ; Lenz, Markus ; Kül, Zöhre Zohra ; Corvini, Philippe F.-X ; Schäffer, Andreas ; Wintgens, Thomas</creatorcontrib><description>Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper–indium−gallium− selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (&lt;3 bar). Retentates were then subjected to a further selective liquid–liquid extraction (LLE). Even at very acidic pH indium was retained to &gt;98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)­phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m–2 CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by &gt;60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥0.6), it may be applied in hydrometallurgy typically using acidic conditions.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es502695k</identifier><identifier>PMID: 25310266</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Acids - chemistry ; Applied sciences ; Consumer goods ; electronic waste ; environment ; Environmental science ; Exact sciences and technology ; Filtration - methods ; Gallium - chemistry ; Hydrogen-Ion Concentration ; Indium ; Indium - chemistry ; Industry - economics ; Ions ; Liquid-Liquid Extraction - methods ; management ; mechanisms ; Membranes ; Membranes, Artificial ; Metalloids - analysis ; Metalloids - economics ; Metals ; Nanotechnology - methods ; nf membranes ; Other wastes and particular components of wastes ; Photochemistry ; Photovoltaic cells ; Pollution ; Pressure ; recovery ; Recycling ; rejection ; Risk assessment ; Selenium - chemistry ; solutes ; Solvents - chemistry ; Wastes ; water</subject><ispartof>Environmental science &amp; technology, 2014-11, Vol.48 (22), p.13412-13418</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Nov 18, 2014</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3</citedby><cites>FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29041915$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25310266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmermann, Yannick-Serge</creatorcontrib><creatorcontrib>Niewersch, Claudia</creatorcontrib><creatorcontrib>Lenz, Markus</creatorcontrib><creatorcontrib>Kül, Zöhre Zohra</creatorcontrib><creatorcontrib>Corvini, Philippe F.-X</creatorcontrib><creatorcontrib>Schäffer, Andreas</creatorcontrib><creatorcontrib>Wintgens, Thomas</creatorcontrib><title>Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper–indium−gallium− selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (&lt;3 bar). Retentates were then subjected to a further selective liquid–liquid extraction (LLE). Even at very acidic pH indium was retained to &gt;98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)­phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m–2 CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by &gt;60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥0.6), it may be applied in hydrometallurgy typically using acidic conditions.</description><subject>Acids - chemistry</subject><subject>Applied sciences</subject><subject>Consumer goods</subject><subject>electronic waste</subject><subject>environment</subject><subject>Environmental science</subject><subject>Exact sciences and technology</subject><subject>Filtration - methods</subject><subject>Gallium - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Indium</subject><subject>Indium - chemistry</subject><subject>Industry - economics</subject><subject>Ions</subject><subject>Liquid-Liquid Extraction - methods</subject><subject>management</subject><subject>mechanisms</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Metalloids - analysis</subject><subject>Metalloids - economics</subject><subject>Metals</subject><subject>Nanotechnology - methods</subject><subject>nf membranes</subject><subject>Other wastes and particular components of wastes</subject><subject>Photochemistry</subject><subject>Photovoltaic cells</subject><subject>Pollution</subject><subject>Pressure</subject><subject>recovery</subject><subject>Recycling</subject><subject>rejection</subject><subject>Risk assessment</subject><subject>Selenium - chemistry</subject><subject>solutes</subject><subject>Solvents - chemistry</subject><subject>Wastes</subject><subject>water</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNks9u1DAQxi0EokvhwAsgSwgJDgE7_pOktypqy0orqApI3CzHcVoXx97aDktvnHgB3pAnwWGXFYILp7E0v2_mm_EA8BijlxiV-JWODJW8YZ_ugAVmJSpYzfBdsEAIk6Ih_OMBeBDjNUKoJKi-Dw5KRrKQ8wX4dqHVrbLGXUI_wKXrzTTC0-BH2C7P3sHzK5_8Z2-TNAq22tp4BM990i4ZaWdF68fOuFl-rExfXOhoYpIuwTfS-cHYFGQy3sGNSVdwZW4m0__4-n37gCdfclrN-Yfg3iBt1I928RB8OD15374uVm_Plu3xqpC0oamQvWZlxTUlNUOI10PPm5JQyiTtcV0RVqGe66YitUJIcsWw5p1SXYmZqgbWkUNwtK27kZd6tq2dcDIoE4WXRljTBRluxWYKwtk5rKcuClo1uUIWP9-K18HfTDomMZqo8lKk036KAnOOSEPrGv8HWvKM5zky-vQv9NpPweUtzFSFKc_dM_ViS6ngYwx6EOtgxtkrRmI-ArE_gsw-2VWculH3e_L3r2fg2Q6QUUk7BOnmDey5BlHc_Bp4x0kV_3D1T8OfgnTHVA</recordid><startdate>20141118</startdate><enddate>20141118</enddate><creator>Zimmermann, Yannick-Serge</creator><creator>Niewersch, Claudia</creator><creator>Lenz, Markus</creator><creator>Kül, Zöhre Zohra</creator><creator>Corvini, Philippe F.-X</creator><creator>Schäffer, Andreas</creator><creator>Wintgens, Thomas</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7U1</scope><scope>7U2</scope><scope>QVL</scope></search><sort><creationdate>20141118</creationdate><title>Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction</title><author>Zimmermann, Yannick-Serge ; Niewersch, Claudia ; Lenz, Markus ; Kül, Zöhre Zohra ; Corvini, Philippe F.-X ; Schäffer, Andreas ; Wintgens, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids - chemistry</topic><topic>Applied sciences</topic><topic>Consumer goods</topic><topic>electronic waste</topic><topic>environment</topic><topic>Environmental science</topic><topic>Exact sciences and technology</topic><topic>Filtration - methods</topic><topic>Gallium - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Indium</topic><topic>Indium - chemistry</topic><topic>Industry - economics</topic><topic>Ions</topic><topic>Liquid-Liquid Extraction - methods</topic><topic>management</topic><topic>mechanisms</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Metalloids - analysis</topic><topic>Metalloids - economics</topic><topic>Metals</topic><topic>Nanotechnology - methods</topic><topic>nf membranes</topic><topic>Other wastes and particular components of wastes</topic><topic>Photochemistry</topic><topic>Photovoltaic cells</topic><topic>Pollution</topic><topic>Pressure</topic><topic>recovery</topic><topic>Recycling</topic><topic>rejection</topic><topic>Risk assessment</topic><topic>Selenium - chemistry</topic><topic>solutes</topic><topic>Solvents - chemistry</topic><topic>Wastes</topic><topic>water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmermann, Yannick-Serge</creatorcontrib><creatorcontrib>Niewersch, Claudia</creatorcontrib><creatorcontrib>Lenz, Markus</creatorcontrib><creatorcontrib>Kül, Zöhre Zohra</creatorcontrib><creatorcontrib>Corvini, Philippe F.-X</creatorcontrib><creatorcontrib>Schäffer, Andreas</creatorcontrib><creatorcontrib>Wintgens, Thomas</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>NARCIS:Publications</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmermann, Yannick-Serge</au><au>Niewersch, Claudia</au><au>Lenz, Markus</au><au>Kül, Zöhre Zohra</au><au>Corvini, Philippe F.-X</au><au>Schäffer, Andreas</au><au>Wintgens, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-11-18</date><risdate>2014</risdate><volume>48</volume><issue>22</issue><spage>13412</spage><epage>13418</epage><pages>13412-13418</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Electronic consumer products such as smartphones, TV, computers, light-emitting diodes, and photovoltaic cells crucially depend on metals and metalloids. So-called “urban mining” considers them as secondary resources since they may contain precious elements at concentrations many times higher than their primary ores. Indium is of foremost interest being widely used, expensive, scarce and prone to supply risk. This study first investigated the capability of different nanofiltration membranes of extracting indium from copper–indium−gallium− selenide photovoltaic cell (CIGS) leachates under low pH conditions and low transmembrane pressure differences (&lt;3 bar). Retentates were then subjected to a further selective liquid–liquid extraction (LLE). Even at very acidic pH indium was retained to &gt;98% by nanofiltration, separating it from parts of the Ag, Sb, Se, and Zn present. LLE using di-(2-ethylhexyl)­phosphoric acid (D2EHPA) extracted 97% of the indium from the retentates, separating it from all other elements except for Mo, Al, and Sn. Overall, 95% (2.4 g m–2 CIGS) of the indium could be extracted to the D2EHPA phase. Simultaneously, by nanofiltration the consumption of D2EHPA was reduced by &gt;60% due to the metal concentration in the reduced retentate volume. These results show clearly the potential for efficient scarce metal recovery from secondary resources. Furthermore, since nanofiltration was applicable at very low pH (≥0.6), it may be applied in hydrometallurgy typically using acidic conditions.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25310266</pmid><doi>10.1021/es502695k</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-11, Vol.48 (22), p.13412-13418
issn 0013-936X
1520-5851
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_479215
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Acids - chemistry
Applied sciences
Consumer goods
electronic waste
environment
Environmental science
Exact sciences and technology
Filtration - methods
Gallium - chemistry
Hydrogen-Ion Concentration
Indium
Indium - chemistry
Industry - economics
Ions
Liquid-Liquid Extraction - methods
management
mechanisms
Membranes
Membranes, Artificial
Metalloids - analysis
Metalloids - economics
Metals
Nanotechnology - methods
nf membranes
Other wastes and particular components of wastes
Photochemistry
Photovoltaic cells
Pollution
Pressure
recovery
Recycling
rejection
Risk assessment
Selenium - chemistry
solutes
Solvents - chemistry
Wastes
water
title Recycling of Indium From CIGS Photovoltaic Cells: Potential of Combining Acid-Resistant Nanofiltration with Liquid–Liquid Extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recycling%20of%20Indium%20From%20CIGS%20Photovoltaic%20Cells:%20Potential%20of%20Combining%20Acid-Resistant%20Nanofiltration%20with%20Liquid%E2%80%93Liquid%20Extraction&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zimmermann,%20Yannick-Serge&rft.date=2014-11-18&rft.volume=48&rft.issue=22&rft.spage=13412&rft.epage=13418&rft.pages=13412-13418&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es502695k&rft_dat=%3Cproquest_wagen%3E1660394881%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a494t-ade5276e43850068fd6923445a4d1873570d6e9738c00a6c51e6bccb215c7f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1627146792&rft_id=info:pmid/25310266&rfr_iscdi=true