Loading…
Microtubule networks for plant cell division
During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called...
Saved in:
Published in: | Systems and synthetic biology 2014-09, Vol.8 (3), p.187-194 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5022-bbd0f7d3a46b9e38b54630783d2326bea692f91d5c1144778bfe1f789935893b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5022-bbd0f7d3a46b9e38b54630783d2326bea692f91d5c1144778bfe1f789935893b3 |
container_end_page | 194 |
container_issue | 3 |
container_start_page | 187 |
container_title | Systems and synthetic biology |
container_volume | 8 |
creator | de Keijzer, Jeroen Mulder, Bela M. Janson, Marcel E. |
description | During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants. |
doi_str_mv | 10.1007/s11693-014-9142-x |
format | article |
fullrecord | <record><control><sourceid>proquest_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_482752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1554941866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5022-bbd0f7d3a46b9e38b54630783d2326bea692f91d5c1144778bfe1f789935893b3</originalsourceid><addsrcrecordid>eNp1UU1P3TAQtCoQn_0BvVSRuPTQtF5_xHYPSBUqbSVQL_Rs2YlDDXn2w0549N_jKPBEK3HxWt6Z8e4MQu8AfwKMxecM0ChaY2C1AkbqhzfoAKQgNaeU7mzvhO-jw5xvMOaCM76H9gkH2lCJD9DHS9-mOE52GlwV3LiJ6TZXfUzVejBhrFo3DFXn7332MRyj3d4M2b19qkfo9_m3q7Mf9cWv7z_Pvl7ULceE1NZ2uBcdNayxylFpOWsoFpJ2hJLGOtMo0ivoeAvAmBDS9g56IZWiXCpq6RH6suhuzLULPpRDB5Nan3U0Xg_eJpP-6s2UdBjmsp5s1kwSwUkhny7k8rhyXevCmMyg18mvZtIs8G8n-D_6Ot5rBkSA4EXgw5NAineTy6Ne-Tz7YIKLU9bAOVMMZNMU6Ml_0Js4pVC8mVEElJB8FoQFVZzOObl-OwxgPQeplyB1CVLPQeqHwnn_cost4zm5AiALIJdWcSi9-PpV1UdMyKn3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552197855</pqid></control><display><type>article</type><title>Microtubule networks for plant cell division</title><source>PubMed Central</source><creator>de Keijzer, Jeroen ; Mulder, Bela M. ; Janson, Marcel E.</creator><creatorcontrib>de Keijzer, Jeroen ; Mulder, Bela M. ; Janson, Marcel E.</creatorcontrib><description>During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.</description><identifier>ISSN: 1872-5325</identifier><identifier>EISSN: 1872-5333</identifier><identifier>DOI: 10.1007/s11693-014-9142-x</identifier><identifier>PMID: 25136380</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Cell division ; Computational Biology/Bioinformatics ; Cytoplasm ; Cytoskeleton ; EPS ; Laboratorium voor Celbiologie ; Laboratory of Cell Biology ; Metabolomics ; Plant biology ; Plant growth ; Review ; Systems Biology</subject><ispartof>Systems and synthetic biology, 2014-09, Vol.8 (3), p.187-194</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5022-bbd0f7d3a46b9e38b54630783d2326bea692f91d5c1144778bfe1f789935893b3</citedby><cites>FETCH-LOGICAL-c5022-bbd0f7d3a46b9e38b54630783d2326bea692f91d5c1144778bfe1f789935893b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127175/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127175/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25136380$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Keijzer, Jeroen</creatorcontrib><creatorcontrib>Mulder, Bela M.</creatorcontrib><creatorcontrib>Janson, Marcel E.</creatorcontrib><title>Microtubule networks for plant cell division</title><title>Systems and synthetic biology</title><addtitle>Syst Synth Biol</addtitle><addtitle>Syst Synth Biol</addtitle><description>During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell division</subject><subject>Computational Biology/Bioinformatics</subject><subject>Cytoplasm</subject><subject>Cytoskeleton</subject><subject>EPS</subject><subject>Laboratorium voor Celbiologie</subject><subject>Laboratory of Cell Biology</subject><subject>Metabolomics</subject><subject>Plant biology</subject><subject>Plant growth</subject><subject>Review</subject><subject>Systems Biology</subject><issn>1872-5325</issn><issn>1872-5333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1UU1P3TAQtCoQn_0BvVSRuPTQtF5_xHYPSBUqbSVQL_Rs2YlDDXn2w0549N_jKPBEK3HxWt6Z8e4MQu8AfwKMxecM0ChaY2C1AkbqhzfoAKQgNaeU7mzvhO-jw5xvMOaCM76H9gkH2lCJD9DHS9-mOE52GlwV3LiJ6TZXfUzVejBhrFo3DFXn7332MRyj3d4M2b19qkfo9_m3q7Mf9cWv7z_Pvl7ULceE1NZ2uBcdNayxylFpOWsoFpJ2hJLGOtMo0ivoeAvAmBDS9g56IZWiXCpq6RH6suhuzLULPpRDB5Nan3U0Xg_eJpP-6s2UdBjmsp5s1kwSwUkhny7k8rhyXevCmMyg18mvZtIs8G8n-D_6Ot5rBkSA4EXgw5NAineTy6Ne-Tz7YIKLU9bAOVMMZNMU6Ml_0Js4pVC8mVEElJB8FoQFVZzOObl-OwxgPQeplyB1CVLPQeqHwnn_cost4zm5AiALIJdWcSi9-PpV1UdMyKn3</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>de Keijzer, Jeroen</creator><creator>Mulder, Bela M.</creator><creator>Janson, Marcel E.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>QVL</scope></search><sort><creationdate>20140901</creationdate><title>Microtubule networks for plant cell division</title><author>de Keijzer, Jeroen ; Mulder, Bela M. ; Janson, Marcel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5022-bbd0f7d3a46b9e38b54630783d2326bea692f91d5c1144778bfe1f789935893b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell division</topic><topic>Computational Biology/Bioinformatics</topic><topic>Cytoplasm</topic><topic>Cytoskeleton</topic><topic>EPS</topic><topic>Laboratorium voor Celbiologie</topic><topic>Laboratory of Cell Biology</topic><topic>Metabolomics</topic><topic>Plant biology</topic><topic>Plant growth</topic><topic>Review</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Keijzer, Jeroen</creatorcontrib><creatorcontrib>Mulder, Bela M.</creatorcontrib><creatorcontrib>Janson, Marcel E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Systems and synthetic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Keijzer, Jeroen</au><au>Mulder, Bela M.</au><au>Janson, Marcel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microtubule networks for plant cell division</atitle><jtitle>Systems and synthetic biology</jtitle><stitle>Syst Synth Biol</stitle><addtitle>Syst Synth Biol</addtitle><date>2014-09-01</date><risdate>2014</risdate><volume>8</volume><issue>3</issue><spage>187</spage><epage>194</epage><pages>187-194</pages><issn>1872-5325</issn><eissn>1872-5333</eissn><abstract>During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>25136380</pmid><doi>10.1007/s11693-014-9142-x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1872-5325 |
ispartof | Systems and synthetic biology, 2014-09, Vol.8 (3), p.187-194 |
issn | 1872-5325 1872-5333 |
language | eng |
recordid | cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_482752 |
source | PubMed Central |
subjects | Biomedical and Life Sciences Biomedicine Cell division Computational Biology/Bioinformatics Cytoplasm Cytoskeleton EPS Laboratorium voor Celbiologie Laboratory of Cell Biology Metabolomics Plant biology Plant growth Review Systems Biology |
title | Microtubule networks for plant cell division |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microtubule%20networks%20for%20plant%20cell%20division&rft.jtitle=Systems%20and%20synthetic%20biology&rft.au=de%20Keijzer,%20Jeroen&rft.date=2014-09-01&rft.volume=8&rft.issue=3&rft.spage=187&rft.epage=194&rft.pages=187-194&rft.issn=1872-5325&rft.eissn=1872-5333&rft_id=info:doi/10.1007/s11693-014-9142-x&rft_dat=%3Cproquest_wagen%3E1554941866%3C/proquest_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5022-bbd0f7d3a46b9e38b54630783d2326bea692f91d5c1144778bfe1f789935893b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552197855&rft_id=info:pmid/25136380&rfr_iscdi=true |