Loading…

Global reverse supply chain redesign for household plastic waste under the emission trading scheme

With increasing global resource scarcity, waste becomes a resource that can be managed globally. A reverse supply chain network for waste recycling needs to process all the waste with minimum costs and environmental impact. As re-processing of waste is one of the major sources of pollution in the re...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cleaner production 2015, Vol.103, p.28-39
Main Authors: Bing, Xiaoyun, Bloemhof-Ruwaard, Jacqueline, Chaabane, Amin, van der Vorst, Jack
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With increasing global resource scarcity, waste becomes a resource that can be managed globally. A reverse supply chain network for waste recycling needs to process all the waste with minimum costs and environmental impact. As re-processing of waste is one of the major sources of pollution in the recycling processes, a mechanism is needed to control and reduce the emission impact in the re-processing as a key to facilitate the globalized reverse supply chain and avoid spreading pollutants overseas. Emission Trading Schemes (ETS) can function as policy instruments for controlling emissions. The ETS introduces a trade-off between the economic efficiency and the environmental impacts. ETS has been implemented in Europe and is developing rapidly in China too. The aim of the research is to re-design a reverse supply chain from a global angle based on a case study conducted on household plastic waste distributed from Europe to China. Emission trading restrictions are set on the processing plants in both Europe and China. We modeled a network optimization problem using integer programing approach, allowing the re-allocation of intermediate processing plants under emission trading restrictions. Optimization results show that global relocation of re-processors leads to both a reduction of total costs and total transportation emission. ETS applied to re-processors further helps to reduce emissions from both re-processing and transportation sectors. Carbon cap should be carefully set in order to be effective. With a given carbon cap, the model also shows the effective carbon price range. These results give an insight into the feasibility of building a global reverse supply chain for household plastic waste recycling and demonstrate the impact of ETS on the network design.
ISSN:0959-6526
1879-1786
DOI:10.1016/j.jclepro.2015.02.019