Loading…

Determination of potential N2O-reductase activity in soil

Determination of N2O-reductase activity in soil is important for understanding the microbial regulation of nitrous oxide (N2O) concentrations in soil. Unfortunately, there are no easily applicable and accurate methods for determining N2O-reductase activity, which frustrates the understanding of the...

Full description

Saved in:
Bibliographic Details
Published in:Soil biology & biochemistry 2014-03, Vol.70, p.205-210
Main Authors: Qin, Shuping, Yuan, Haijing, Hu, Chunsheng, Oenema, Oene, Zhang, Yuming, Li, Xiaoxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Determination of N2O-reductase activity in soil is important for understanding the microbial regulation of nitrous oxide (N2O) concentrations in soil. Unfortunately, there are no easily applicable and accurate methods for determining N2O-reductase activity, which frustrates the understanding of the mechanisms that control soil management effects on denitrification and N2O emissions. The objectives of the study reported here were (i) to define the optimal experimental conditions for the determination of potential N2O-reductase activity in soil, (ii) to compare the direct-N2 method with the acetylene inhibition technique, and (iii) to investigate the effects of long-term nitrogen (N) fertilization on the potential N2O-reductase activity. Various substrate concentrations, water/soil ratios, incubation times, temperatures and pH values were tested to find the optimal conditions for the potential N2O-reductase activity in soils from two sites. Then, the potential N2O-reductase activity was determined under optimal conditions (10 g soil, 10 ml buffer solution, pH 9, 40 °C, 100 ppmv N2O) in soils from the long-term N fertilization experiment. There were significant differences between soils in potential N2O-reductase activity, but the optimal experimental conditions were similar. The acetylene inhibition technique underestimated N2O-reductase activity in soil relative to the direct-N2 method, especially in the treatment where fertilizer N was withheld for 15 yrs. We recommend that the optimal experimental conditions for the determination of the potential N2O-reductase activity are established also for other soils. More studies are needed to fully understand the interactive effects of long-term N fertilization on nosZ gene expression and N2O-reductase activity in soils. •Soil N2O-reductase activity was assayed by direct-N2 and C2H2 inhibition methods.•The Direct-N2 method was superior to C2H2 inhibition in non-fertilized soils.•Moderate N rate lead to relatively lower N2O-reductase activity.
ISSN:0038-0717
1879-3428
DOI:10.1016/j.soilbio.2013.12.027