Loading…

Protein Aggregates May Differ in Water Entrapment but Are Comparable in Water Confinement

Aggregate size and density are related to gel morphology. In the context of the water distribution in complex food systems, in this study, it was aimed to investigate whether protein aggregates varying in size and density differ in entrapped and confined water. Heat-set soy protein aggregates (1%, v...

Full description

Saved in:
Bibliographic Details
Published in:Journal of agricultural and food chemistry 2015-10, Vol.63 (40), p.8912-8920
Main Authors: Urbonaite, V, de Jongh, H. H. J, van der Linden, E, Pouvreau, L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aggregate size and density are related to gel morphology. In the context of the water distribution in complex food systems, in this study, it was aimed to investigate whether protein aggregates varying in size and density differ in entrapped and confined water. Heat-set soy protein aggregates (1%, v/v) prepared in the presence of 3.5 mM divalent salts increased in size and decreased in apparent density following the salt type order MgSO4, MgCl2, CaSO4, and CaCl2. In the absence of applied (centrifugal) forces, larger and less dense aggregates entrap more water. When force is applied from larger and more deformable aggregates, more water can be displaced. Entrapped water of ∼8–13 g of water/g of protein is associated with (pelleted) aggregates, of which approximately 4.5–8.5 g of water/g of protein is not constrained in exchangeability with the solvent. The amount of confined water within aggregates was found to be independent of the aggregate density and accounted for ∼3.5 g of water/g of protein. Confined water in aggregates is hindered in its diffusion because of physical structure constraints and, therefore, not directly exchangeable with the solvent. These insights in the protein aggregate size and deformability in relation to water entrapment and confinement could be used to tune water holding on larger length scales when force is applied.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.5b03784