Loading…

Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL

Key message Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical appli...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied genetics 2018-05, Vol.131 (5), p.1031-1045
Main Authors: Romero, Cynara C. T., Vermeulen, Jasper P., Vels, Anton, Himmelbach, Axel, Mascher, Martin, Niks, Rients E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c655t-b641d57236e79b548153b58503cfa06123484cfd294e4fda993b19a16fef75093
cites cdi_FETCH-LOGICAL-c655t-b641d57236e79b548153b58503cfa06123484cfd294e4fda993b19a16fef75093
container_end_page 1045
container_issue 5
container_start_page 1031
container_title Theoretical and applied genetics
container_volume 131
creator Romero, Cynara C. T.
Vermeulen, Jasper P.
Vels, Anton
Himmelbach, Axel
Mascher, Martin
Niks, Rients E.
description Key message Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley ( Hordeum vulgare L.) to powdery mildews ( Blumeria graminis ). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgt SC and SusBgt DC , with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici ( Bgt ) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
doi_str_mv 10.1007/s00122-018-3055-0
format article
fullrecord <record><control><sourceid>gale_wagen</sourceid><recordid>TN_cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_533383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534375303</galeid><sourcerecordid>A534375303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c655t-b641d57236e79b548153b58503cfa06123484cfd294e4fda993b19a16fef75093</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhB3BBkbjAIcVfk8QckKqKj0qLEFBuSJaTjFNXWXtrJ1323-NoS9lFIOTDSPbzvhrPvFn2lJITSkj1KhJCGSsIrQtOAApyL1tQwVnBmGD3swUhghRQATvKHsV4RQhhQPjD7IhJXjFWs0X2_aNer63r84DRxlG7FvPR52u_6TBs85UdOtzk1uWNDgNuE3aDeoi5zgcdeizQGGzH3Hl36eO47_L5Yvk4e2ASjE9u63H27d3bi7MPxfLT-_Oz02XRlgBj0ZSCdlAxXmIlGxA1Bd5AnVptjSYlZVzUojUdkwKF6bSUvKFS09KgqYBIfpy93vludI8u_Qadcjq0NiqvrRpsE3TYqs0UlBvmsp6aqIBzXvMkfrMTp8sVdi26MehBrYNdzaLZ4PDF2UvV-xsFtYSyJsngxa1B8NcTxlGtbGxxGLRDP0XFSFkxKAXI_6JUSpZWKiQk9Pkf6JWfgktjnCkuAOqS_6Z6PaCyzvjUYjubqlPgglfAyUyd_IVKp8OVbb1DY9P9geDlgSAxI_4Yez3FqM6_fjlk6Y5tg48xoLkbHSVqjqnaxVSlmKo5pmoe2bP9md8pfuUyAWwHxPSU9hn2fv9P15-8AvEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993455863</pqid></control><display><type>article</type><title>Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL</title><source>Springer Nature</source><creator>Romero, Cynara C. T. ; Vermeulen, Jasper P. ; Vels, Anton ; Himmelbach, Axel ; Mascher, Martin ; Niks, Rients E.</creator><creatorcontrib>Romero, Cynara C. T. ; Vermeulen, Jasper P. ; Vels, Anton ; Himmelbach, Axel ; Mascher, Martin ; Niks, Rients E.</creatorcontrib><description>Key message Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley ( Hordeum vulgare L.) to powdery mildews ( Blumeria graminis ). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgt SC and SusBgt DC , with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici ( Bgt ) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-018-3055-0</identifier><identifier>PMID: 29372282</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Ascomycota ; Barley ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Blumeria graminis ; Chromosome Mapping ; Disease resistance (Plants) ; Disease Resistance - genetics ; Diseases and pests ; durability ; EPS ; Gene loci ; Gene mapping ; Genetic aspects ; Genetic factors ; haustoria ; Health aspects ; histology ; Hordeum - genetics ; Hordeum - microbiology ; Hordeum vulgare ; Laboratorium voor Plantenveredeling ; Laboratory of Plant Breeding ; Life Sciences ; Mildew ; mildews ; molecular cloning ; Original ; Original Article ; Papillae ; PBR Non host and insect resistance ; PBR Non host en Insectenresistentie ; Phenotype ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Genetics and Genomics ; Polygenic inheritance ; Powdery mildew ; Prevention ; PW Unifarm Serre Zuid ; Quantitative Trait Loci ; resistance genes ; Unifarm Serre Zuid ; wheat</subject><ispartof>Theoretical and applied genetics, 2018-05, Vol.131 (5), p.1031-1045</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Theoretical and Applied Genetics is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c655t-b641d57236e79b548153b58503cfa06123484cfd294e4fda993b19a16fef75093</citedby><cites>FETCH-LOGICAL-c655t-b641d57236e79b548153b58503cfa06123484cfd294e4fda993b19a16fef75093</cites><orcidid>0000-0002-3912-3775 ; 0000-0002-4171-1680</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29372282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Romero, Cynara C. T.</creatorcontrib><creatorcontrib>Vermeulen, Jasper P.</creatorcontrib><creatorcontrib>Vels, Anton</creatorcontrib><creatorcontrib>Himmelbach, Axel</creatorcontrib><creatorcontrib>Mascher, Martin</creatorcontrib><creatorcontrib>Niks, Rients E.</creatorcontrib><title>Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley ( Hordeum vulgare L.) to powdery mildews ( Blumeria graminis ). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgt SC and SusBgt DC , with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici ( Bgt ) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.</description><subject>Agriculture</subject><subject>Ascomycota</subject><subject>Barley</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Blumeria graminis</subject><subject>Chromosome Mapping</subject><subject>Disease resistance (Plants)</subject><subject>Disease Resistance - genetics</subject><subject>Diseases and pests</subject><subject>durability</subject><subject>EPS</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Genetic factors</subject><subject>haustoria</subject><subject>Health aspects</subject><subject>histology</subject><subject>Hordeum - genetics</subject><subject>Hordeum - microbiology</subject><subject>Hordeum vulgare</subject><subject>Laboratorium voor Plantenveredeling</subject><subject>Laboratory of Plant Breeding</subject><subject>Life Sciences</subject><subject>Mildew</subject><subject>mildews</subject><subject>molecular cloning</subject><subject>Original</subject><subject>Original Article</subject><subject>Papillae</subject><subject>PBR Non host and insect resistance</subject><subject>PBR Non host en Insectenresistentie</subject><subject>Phenotype</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Genetics and Genomics</subject><subject>Polygenic inheritance</subject><subject>Powdery mildew</subject><subject>Prevention</subject><subject>PW Unifarm Serre Zuid</subject><subject>Quantitative Trait Loci</subject><subject>resistance genes</subject><subject>Unifarm Serre Zuid</subject><subject>wheat</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEokvhB3BBkbjAIcVfk8QckKqKj0qLEFBuSJaTjFNXWXtrJ1323-NoS9lFIOTDSPbzvhrPvFn2lJITSkj1KhJCGSsIrQtOAApyL1tQwVnBmGD3swUhghRQATvKHsV4RQhhQPjD7IhJXjFWs0X2_aNer63r84DRxlG7FvPR52u_6TBs85UdOtzk1uWNDgNuE3aDeoi5zgcdeizQGGzH3Hl36eO47_L5Yvk4e2ASjE9u63H27d3bi7MPxfLT-_Oz02XRlgBj0ZSCdlAxXmIlGxA1Bd5AnVptjSYlZVzUojUdkwKF6bSUvKFS09KgqYBIfpy93vludI8u_Qadcjq0NiqvrRpsE3TYqs0UlBvmsp6aqIBzXvMkfrMTp8sVdi26MehBrYNdzaLZ4PDF2UvV-xsFtYSyJsngxa1B8NcTxlGtbGxxGLRDP0XFSFkxKAXI_6JUSpZWKiQk9Pkf6JWfgktjnCkuAOqS_6Z6PaCyzvjUYjubqlPgglfAyUyd_IVKp8OVbb1DY9P9geDlgSAxI_4Yez3FqM6_fjlk6Y5tg48xoLkbHSVqjqnaxVSlmKo5pmoe2bP9md8pfuUyAWwHxPSU9hn2fv9P15-8AvEY</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Romero, Cynara C. T.</creator><creator>Vermeulen, Jasper P.</creator><creator>Vels, Anton</creator><creator>Himmelbach, Axel</creator><creator>Mascher, Martin</creator><creator>Niks, Rients E.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>QVL</scope><orcidid>https://orcid.org/0000-0002-3912-3775</orcidid><orcidid>https://orcid.org/0000-0002-4171-1680</orcidid></search><sort><creationdate>20180501</creationdate><title>Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL</title><author>Romero, Cynara C. T. ; Vermeulen, Jasper P. ; Vels, Anton ; Himmelbach, Axel ; Mascher, Martin ; Niks, Rients E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c655t-b641d57236e79b548153b58503cfa06123484cfd294e4fda993b19a16fef75093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Ascomycota</topic><topic>Barley</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Blumeria graminis</topic><topic>Chromosome Mapping</topic><topic>Disease resistance (Plants)</topic><topic>Disease Resistance - genetics</topic><topic>Diseases and pests</topic><topic>durability</topic><topic>EPS</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Genetic factors</topic><topic>haustoria</topic><topic>Health aspects</topic><topic>histology</topic><topic>Hordeum - genetics</topic><topic>Hordeum - microbiology</topic><topic>Hordeum vulgare</topic><topic>Laboratorium voor Plantenveredeling</topic><topic>Laboratory of Plant Breeding</topic><topic>Life Sciences</topic><topic>Mildew</topic><topic>mildews</topic><topic>molecular cloning</topic><topic>Original</topic><topic>Original Article</topic><topic>Papillae</topic><topic>PBR Non host and insect resistance</topic><topic>PBR Non host en Insectenresistentie</topic><topic>Phenotype</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Genetics and Genomics</topic><topic>Polygenic inheritance</topic><topic>Powdery mildew</topic><topic>Prevention</topic><topic>PW Unifarm Serre Zuid</topic><topic>Quantitative Trait Loci</topic><topic>resistance genes</topic><topic>Unifarm Serre Zuid</topic><topic>wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romero, Cynara C. T.</creatorcontrib><creatorcontrib>Vermeulen, Jasper P.</creatorcontrib><creatorcontrib>Vels, Anton</creatorcontrib><creatorcontrib>Himmelbach, Axel</creatorcontrib><creatorcontrib>Mascher, Martin</creatorcontrib><creatorcontrib>Niks, Rients E.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>NARCIS:Publications</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romero, Cynara C. T.</au><au>Vermeulen, Jasper P.</au><au>Vels, Anton</au><au>Himmelbach, Axel</au><au>Mascher, Martin</au><au>Niks, Rients E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>131</volume><issue>5</issue><spage>1031</spage><epage>1045</epage><pages>1031-1045</pages><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley ( Hordeum vulgare L.) to powdery mildews ( Blumeria graminis ). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgt SC and SusBgt DC , with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici ( Bgt ) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29372282</pmid><doi>10.1007/s00122-018-3055-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3912-3775</orcidid><orcidid>https://orcid.org/0000-0002-4171-1680</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0040-5752
ispartof Theoretical and applied genetics, 2018-05, Vol.131 (5), p.1031-1045
issn 0040-5752
1432-2242
language eng
recordid cdi_wageningen_narcis_oai_library_wur_nl_wurpubs_533383
source Springer Nature
subjects Agriculture
Ascomycota
Barley
Biochemistry
Biomedical and Life Sciences
Biotechnology
Blumeria graminis
Chromosome Mapping
Disease resistance (Plants)
Disease Resistance - genetics
Diseases and pests
durability
EPS
Gene loci
Gene mapping
Genetic aspects
Genetic factors
haustoria
Health aspects
histology
Hordeum - genetics
Hordeum - microbiology
Hordeum vulgare
Laboratorium voor Plantenveredeling
Laboratory of Plant Breeding
Life Sciences
Mildew
mildews
molecular cloning
Original
Original Article
Papillae
PBR Non host and insect resistance
PBR Non host en Insectenresistentie
Phenotype
Plant Biochemistry
Plant Breeding
Plant Breeding/Biotechnology
Plant Diseases - genetics
Plant Diseases - microbiology
Plant Genetics and Genomics
Polygenic inheritance
Powdery mildew
Prevention
PW Unifarm Serre Zuid
Quantitative Trait Loci
resistance genes
Unifarm Serre Zuid
wheat
title Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_wagen&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20resistance%20to%20powdery%20mildew%20in%20barley%20reveals%20a%20large-effect%20nonhost%20resistance%20QTL&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Romero,%20Cynara%20C.%20T.&rft.date=2018-05-01&rft.volume=131&rft.issue=5&rft.spage=1031&rft.epage=1045&rft.pages=1031-1045&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-018-3055-0&rft_dat=%3Cgale_wagen%3EA534375303%3C/gale_wagen%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c655t-b641d57236e79b548153b58503cfa06123484cfd294e4fda993b19a16fef75093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993455863&rft_id=info:pmid/29372282&rft_galeid=A534375303&rfr_iscdi=true