Loading…

Fluctuations in populations of subsurface methane oxidizers in coordination with changes in electron acceptor availability

The concentrations of electron donors and acceptors in the terrestrial subsurface biosphere fluctuate due to migration and mixing of subsurface fluids, but the mechanisms and rates at which microbial communities respond to these changes are largely unknown. Subsurface microbial communities exhibit l...

Full description

Saved in:
Bibliographic Details
Published in:FEMS microbiology ecology 2018-07, Vol.94 (7)
Main Authors: Magnabosco, C, Timmers, P H A, Lau, M C Y, Borgonie, G, Linage-Alvarez, B, Kuloyo, O, Alleva, R, Kieft, T L, Slater, G F, van Heerden, E, Sherwood Lollar, B, Onstott, T C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concentrations of electron donors and acceptors in the terrestrial subsurface biosphere fluctuate due to migration and mixing of subsurface fluids, but the mechanisms and rates at which microbial communities respond to these changes are largely unknown. Subsurface microbial communities exhibit long cellular turnover times and are often considered relatively static-generating just enough ATP for cellular maintenance. Here, we investigated how subsurface populations of CH4 oxidizers respond to changes in electron acceptor availability by monitoring the biological and geochemical composition in a 1339 m-below-land-surface (mbls) fluid-filled fracture over the course of both longer (2.5 year) and shorter (2-week) time scales. Using a combination of metagenomic, metatranscriptomic, and metaproteomic analyses, we observe that the CH4 oxidizers within the subsurface microbial community change in coordination with electron acceptor availability over time. We then validate these findings through a series of 13C-CH4 laboratory incubation experiments, highlighting a connection between composition of subsurface CH4 oxidizing communities and electron acceptor availability.
ISSN:1574-6941
0168-6496
1574-6941
DOI:10.1093/femsec/fiy089