Loading…
Visual-attention gabor filter based online multi-armored target tracking
The multi-armored target tracking (MATT) plays a crucial role in coordinated tracking and strike. The occlusion and insertion among targets and target scale variation is the key problems in MATT. Most state-of-the-art multi-object tracking (MOT) works adopt the tracking-by-detection strategy, which...
Saved in:
Published in: | 防务技术 2021, Vol.17 (4), p.1249-1261 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1261 |
container_issue | 4 |
container_start_page | 1249 |
container_title | 防务技术 |
container_volume | 17 |
creator | Fan-jie Meng Xin-qing Wang Fa-ming Shao Dong Wang Yao-wei Yu Yi Xiao |
description | The multi-armored target tracking (MATT) plays a crucial role in coordinated tracking and strike. The occlusion and insertion among targets and target scale variation is the key problems in MATT. Most state-of-the-art multi-object tracking (MOT) works adopt the tracking-by-detection strategy, which rely on compute-intensive sliding window or anchoring scheme in detection module and neglect the target scale variation in tracking module. In this work, we proposed a more efficient and effective spatial-temporal attention scheme to track multi-armored target in the ground battlefield. By simulating the structure of the retina, a novel visual-attention Gabor filter branch is proposed to enhance detection. By introducing temporal information, some online learned target-specific Convolutional Neural Networks (CNNs) are adopted to address occlusion. More importantly, we built a MOT dataset for armored targets, called Armored Target Tracking dataset (ATTD), based on which several comparable experiments with state-of-the-art methods are conducted. Experimental results show that the proposed method achieves outstanding tracking performance and meets the actual application requirements. |
doi_str_mv | 10.3969/j.issn.2214-9147.2021.04.013 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_bgxb_e202104013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bgxb_e202104013</wanfj_id><sourcerecordid>bgxb_e202104013</sourcerecordid><originalsourceid>FETCH-wanfang_journals_bgxb_e2021040133</originalsourceid><addsrcrecordid>eNqNjkEKwjAURIMoWLR3yEJw1Zi01dq1KD2AuC2_mobU9AeSFD2-FURcuprhzSweISvBWVbuyk3HtPfI0lTkSSnygqU8FYznjItsQqIvn_70OYm97zjnYj-ybRGR6qL9ACaBECQGbZEqaKyjrTZBOtqAlzdq0WiUtB9M0Am43roRBnBKBhocXO8a1ZLMWjBexp9ckPXpeD5UyQOwBVR1ZweH41I36tnU8m3L89E1-__5Ar7jSc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visual-attention gabor filter based online multi-armored target tracking</title><source>EZB Free E-Journals</source><source>Elsevier ScienceDirect Journals</source><creator>Fan-jie Meng ; Xin-qing Wang ; Fa-ming Shao ; Dong Wang ; Yao-wei Yu ; Yi Xiao</creator><creatorcontrib>Fan-jie Meng ; Xin-qing Wang ; Fa-ming Shao ; Dong Wang ; Yao-wei Yu ; Yi Xiao</creatorcontrib><description>The multi-armored target tracking (MATT) plays a crucial role in coordinated tracking and strike. The occlusion and insertion among targets and target scale variation is the key problems in MATT. Most state-of-the-art multi-object tracking (MOT) works adopt the tracking-by-detection strategy, which rely on compute-intensive sliding window or anchoring scheme in detection module and neglect the target scale variation in tracking module. In this work, we proposed a more efficient and effective spatial-temporal attention scheme to track multi-armored target in the ground battlefield. By simulating the structure of the retina, a novel visual-attention Gabor filter branch is proposed to enhance detection. By introducing temporal information, some online learned target-specific Convolutional Neural Networks (CNNs) are adopted to address occlusion. More importantly, we built a MOT dataset for armored targets, called Armored Target Tracking dataset (ATTD), based on which several comparable experiments with state-of-the-art methods are conducted. Experimental results show that the proposed method achieves outstanding tracking performance and meets the actual application requirements.</description><identifier>ISSN: 2214-9147</identifier><identifier>EISSN: 2214-9147</identifier><identifier>DOI: 10.3969/j.issn.2214-9147.2021.04.013</identifier><language>eng</language><publisher>Department of Mechanical Engineering, College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China%College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210007, China</publisher><ispartof>防务技术, 2021, Vol.17 (4), p.1249-1261</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bgxb-e/bgxb-e.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Fan-jie Meng</creatorcontrib><creatorcontrib>Xin-qing Wang</creatorcontrib><creatorcontrib>Fa-ming Shao</creatorcontrib><creatorcontrib>Dong Wang</creatorcontrib><creatorcontrib>Yao-wei Yu</creatorcontrib><creatorcontrib>Yi Xiao</creatorcontrib><title>Visual-attention gabor filter based online multi-armored target tracking</title><title>防务技术</title><description>The multi-armored target tracking (MATT) plays a crucial role in coordinated tracking and strike. The occlusion and insertion among targets and target scale variation is the key problems in MATT. Most state-of-the-art multi-object tracking (MOT) works adopt the tracking-by-detection strategy, which rely on compute-intensive sliding window or anchoring scheme in detection module and neglect the target scale variation in tracking module. In this work, we proposed a more efficient and effective spatial-temporal attention scheme to track multi-armored target in the ground battlefield. By simulating the structure of the retina, a novel visual-attention Gabor filter branch is proposed to enhance detection. By introducing temporal information, some online learned target-specific Convolutional Neural Networks (CNNs) are adopted to address occlusion. More importantly, we built a MOT dataset for armored targets, called Armored Target Tracking dataset (ATTD), based on which several comparable experiments with state-of-the-art methods are conducted. Experimental results show that the proposed method achieves outstanding tracking performance and meets the actual application requirements.</description><issn>2214-9147</issn><issn>2214-9147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNjkEKwjAURIMoWLR3yEJw1Zi01dq1KD2AuC2_mobU9AeSFD2-FURcuprhzSweISvBWVbuyk3HtPfI0lTkSSnygqU8FYznjItsQqIvn_70OYm97zjnYj-ybRGR6qL9ACaBECQGbZEqaKyjrTZBOtqAlzdq0WiUtB9M0Am43roRBnBKBhocXO8a1ZLMWjBexp9ckPXpeD5UyQOwBVR1ZweH41I36tnU8m3L89E1-__5Ar7jSc4</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Fan-jie Meng</creator><creator>Xin-qing Wang</creator><creator>Fa-ming Shao</creator><creator>Dong Wang</creator><creator>Yao-wei Yu</creator><creator>Yi Xiao</creator><general>Department of Mechanical Engineering, College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China%College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210007, China</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2021</creationdate><title>Visual-attention gabor filter based online multi-armored target tracking</title><author>Fan-jie Meng ; Xin-qing Wang ; Fa-ming Shao ; Dong Wang ; Yao-wei Yu ; Yi Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_bgxb_e2021040133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan-jie Meng</creatorcontrib><creatorcontrib>Xin-qing Wang</creatorcontrib><creatorcontrib>Fa-ming Shao</creatorcontrib><creatorcontrib>Dong Wang</creatorcontrib><creatorcontrib>Yao-wei Yu</creatorcontrib><creatorcontrib>Yi Xiao</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>防务技术</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan-jie Meng</au><au>Xin-qing Wang</au><au>Fa-ming Shao</au><au>Dong Wang</au><au>Yao-wei Yu</au><au>Yi Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual-attention gabor filter based online multi-armored target tracking</atitle><jtitle>防务技术</jtitle><date>2021</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>1249</spage><epage>1261</epage><pages>1249-1261</pages><issn>2214-9147</issn><eissn>2214-9147</eissn><abstract>The multi-armored target tracking (MATT) plays a crucial role in coordinated tracking and strike. The occlusion and insertion among targets and target scale variation is the key problems in MATT. Most state-of-the-art multi-object tracking (MOT) works adopt the tracking-by-detection strategy, which rely on compute-intensive sliding window or anchoring scheme in detection module and neglect the target scale variation in tracking module. In this work, we proposed a more efficient and effective spatial-temporal attention scheme to track multi-armored target in the ground battlefield. By simulating the structure of the retina, a novel visual-attention Gabor filter branch is proposed to enhance detection. By introducing temporal information, some online learned target-specific Convolutional Neural Networks (CNNs) are adopted to address occlusion. More importantly, we built a MOT dataset for armored targets, called Armored Target Tracking dataset (ATTD), based on which several comparable experiments with state-of-the-art methods are conducted. Experimental results show that the proposed method achieves outstanding tracking performance and meets the actual application requirements.</abstract><pub>Department of Mechanical Engineering, College of Field Engineering, Army Engineering University of PLA, Nanjing 210007, China%College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210007, China</pub><doi>10.3969/j.issn.2214-9147.2021.04.013</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-9147 |
ispartof | 防务技术, 2021, Vol.17 (4), p.1249-1261 |
issn | 2214-9147 2214-9147 |
language | eng |
recordid | cdi_wanfang_journals_bgxb_e202104013 |
source | EZB Free E-Journals; Elsevier ScienceDirect Journals |
title | Visual-attention gabor filter based online multi-armored target tracking |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual-attention%20gabor%20filter%20based%20online%20multi-armored%20target%20tracking&rft.jtitle=%E9%98%B2%E5%8A%A1%E6%8A%80%E6%9C%AF&rft.au=Fan-jie%20Meng&rft.date=2021&rft.volume=17&rft.issue=4&rft.spage=1249&rft.epage=1261&rft.pages=1249-1261&rft.issn=2214-9147&rft.eissn=2214-9147&rft_id=info:doi/10.3969/j.issn.2214-9147.2021.04.013&rft_dat=%3Cwanfang_jour%3Ebgxb_e202104013%3C/wanfang_jour%3E%3Cgrp_id%3Ecdi_FETCH-wanfang_journals_bgxb_e2021040133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=bgxb_e202104013&rfr_iscdi=true |