Loading…

Mechanical properties of electroformed copper layers with gradient microstructure

The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were charac...

Full description

Saved in:
Bibliographic Details
Published in:International journal of minerals, metallurgy and materials metallurgy and materials, 2010-02, Vol.17 (1), p.69-74
Main Authors: Liao, Qiang, Zhu, Li-qun, Liu, Hui-cong, Li, Wei-ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3
cites cdi_FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3
container_end_page 74
container_issue 1
container_start_page 69
container_title International journal of minerals, metallurgy and materials
container_volume 17
creator Liao, Qiang
Zhu, Li-qun
Liu, Hui-cong
Li, Wei-ping
description The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.
doi_str_mv 10.1007/s12613-010-0112-3
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201001012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33042442</cqvip_id><wanfj_id>bjkjdxxb_e201001012</wanfj_id><sourcerecordid>bjkjdxxb_e201001012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3</originalsourceid><addsrcrecordid>eNp9kVtLxDAQhYsoeP0BvhV98EGqk8s2zaMs3kARQcG3kKaT3a7dZjdp2d1_b5aKgg9CQgbmO-cwmSQ5JXBFAMR1IDQnLAMC8RKasZ3kgBS5zAiwj91Y54JnXEi5nxyGMAPIhQBxkLw-o5nqtja6SRfeLdB3NYbU2RQbNJ131vk5Vqlxi9hLG71BH9JV3U3TiddVjW2XzmvjXeh8b7re43GyZ3UT8OT7PUre727fxg_Z08v94_jmKTOckC4TBTCAUmpSUNB5LkYMudRSABNclExUUIwMRqKoDJaitNXIssKIXFNBrGZHyeXgu9Kt1e1EzVzv25ioytnnrFqvS4U0_kc8hEb6YqDjkMseQ6fmdTDYNLpF1wcV4_NCMiIjef6H_DGmkgKjkvEtRQZqO3rwaNXC13PtN4qA2m5EDRtRMV5tN6JY1NBBEyLbTtD_Ov8nOvsOmrp2sow6VWrzaesGYxc45ZyyL0AYmUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920329349</pqid></control><display><type>article</type><title>Mechanical properties of electroformed copper layers with gradient microstructure</title><source>Springer Nature</source><creator>Liao, Qiang ; Zhu, Li-qun ; Liu, Hui-cong ; Li, Wei-ping</creator><creatorcontrib>Liao, Qiang ; Zhu, Li-qun ; Liu, Hui-cong ; Li, Wei-ping</creatorcontrib><description>The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-010-0112-3</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Copper ; COPPER (PURE) ; COPPER RESOURCES ; Corrosion and Coatings ; Crystals ; Ductility ; ELECTROFORMING ; Electron microscopes ; Glass ; Grain size ; HARDNESS ; Materials Science ; MECHANICAL PROPERTIES ; Metallic Materials ; Metallurgy ; Microhardness ; Microstructure ; MICROSTRUCTURES ; Natural Materials ; Optical microscopes ; PREFERRED ORIENTATION ; PROPERTIES ; SCANNING ELECTRON MICROSCOPY ; Substrates ; Surfaces and Interfaces ; Tensile strength ; Thickness ; Thin Films ; Tribology ; Ultrasonic methods ; X-ray diffraction ; X射线衍射仪 ; 力学性能 ; 扫描电子显微镜 ; 机械性能 ; 梯度结构 ; 超声波技术</subject><ispartof>International journal of minerals, metallurgy and materials, 2010-02, Vol.17 (1), p.69-74</ispartof><rights>Journal Publishing Center of University of Science and Technology Beijing and Springer Berlin Heidelberg 2010</rights><rights>Journal Publishing Center of University of Science and Technology Beijing and Springer Berlin Heidelberg 2010.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3</citedby><cites>FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liao, Qiang</creatorcontrib><creatorcontrib>Zhu, Li-qun</creatorcontrib><creatorcontrib>Liu, Hui-cong</creatorcontrib><creatorcontrib>Li, Wei-ping</creatorcontrib><title>Mechanical properties of electroformed copper layers with gradient microstructure</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Copper</subject><subject>COPPER (PURE)</subject><subject>COPPER RESOURCES</subject><subject>Corrosion and Coatings</subject><subject>Crystals</subject><subject>Ductility</subject><subject>ELECTROFORMING</subject><subject>Electron microscopes</subject><subject>Glass</subject><subject>Grain size</subject><subject>HARDNESS</subject><subject>Materials Science</subject><subject>MECHANICAL PROPERTIES</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Natural Materials</subject><subject>Optical microscopes</subject><subject>PREFERRED ORIENTATION</subject><subject>PROPERTIES</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Ultrasonic methods</subject><subject>X-ray diffraction</subject><subject>X射线衍射仪</subject><subject>力学性能</subject><subject>扫描电子显微镜</subject><subject>机械性能</subject><subject>梯度结构</subject><subject>超声波技术</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLxDAQhYsoeP0BvhV98EGqk8s2zaMs3kARQcG3kKaT3a7dZjdp2d1_b5aKgg9CQgbmO-cwmSQ5JXBFAMR1IDQnLAMC8RKasZ3kgBS5zAiwj91Y54JnXEi5nxyGMAPIhQBxkLw-o5nqtja6SRfeLdB3NYbU2RQbNJ131vk5Vqlxi9hLG71BH9JV3U3TiddVjW2XzmvjXeh8b7re43GyZ3UT8OT7PUre727fxg_Z08v94_jmKTOckC4TBTCAUmpSUNB5LkYMudRSABNclExUUIwMRqKoDJaitNXIssKIXFNBrGZHyeXgu9Kt1e1EzVzv25ioytnnrFqvS4U0_kc8hEb6YqDjkMseQ6fmdTDYNLpF1wcV4_NCMiIjef6H_DGmkgKjkvEtRQZqO3rwaNXC13PtN4qA2m5EDRtRMV5tN6JY1NBBEyLbTtD_Ov8nOvsOmrp2sow6VWrzaesGYxc45ZyyL0AYmUI</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Liao, Qiang</creator><creator>Zhu, Li-qun</creator><creator>Liu, Hui-cong</creator><creator>Li, Wei-ping</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>School of Materials Science and Engineering,Beihang University,Beijing 100191,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20100201</creationdate><title>Mechanical properties of electroformed copper layers with gradient microstructure</title><author>Liao, Qiang ; Zhu, Li-qun ; Liu, Hui-cong ; Li, Wei-ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Copper</topic><topic>COPPER (PURE)</topic><topic>COPPER RESOURCES</topic><topic>Corrosion and Coatings</topic><topic>Crystals</topic><topic>Ductility</topic><topic>ELECTROFORMING</topic><topic>Electron microscopes</topic><topic>Glass</topic><topic>Grain size</topic><topic>HARDNESS</topic><topic>Materials Science</topic><topic>MECHANICAL PROPERTIES</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Natural Materials</topic><topic>Optical microscopes</topic><topic>PREFERRED ORIENTATION</topic><topic>PROPERTIES</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Ultrasonic methods</topic><topic>X-ray diffraction</topic><topic>X射线衍射仪</topic><topic>力学性能</topic><topic>扫描电子显微镜</topic><topic>机械性能</topic><topic>梯度结构</topic><topic>超声波技术</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Qiang</creatorcontrib><creatorcontrib>Zhu, Li-qun</creatorcontrib><creatorcontrib>Liu, Hui-cong</creatorcontrib><creatorcontrib>Li, Wei-ping</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Qiang</au><au>Zhu, Li-qun</au><au>Liu, Hui-cong</au><au>Li, Wei-ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of electroformed copper layers with gradient microstructure</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>17</volume><issue>1</issue><spage>69</spage><epage>74</epage><pages>69-74</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-010-0112-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2010-02, Vol.17 (1), p.69-74
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201001012
source Springer Nature
subjects Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Copper
COPPER (PURE)
COPPER RESOURCES
Corrosion and Coatings
Crystals
Ductility
ELECTROFORMING
Electron microscopes
Glass
Grain size
HARDNESS
Materials Science
MECHANICAL PROPERTIES
Metallic Materials
Metallurgy
Microhardness
Microstructure
MICROSTRUCTURES
Natural Materials
Optical microscopes
PREFERRED ORIENTATION
PROPERTIES
SCANNING ELECTRON MICROSCOPY
Substrates
Surfaces and Interfaces
Tensile strength
Thickness
Thin Films
Tribology
Ultrasonic methods
X-ray diffraction
X射线衍射仪
力学性能
扫描电子显微镜
机械性能
梯度结构
超声波技术
title Mechanical properties of electroformed copper layers with gradient microstructure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20electroformed%20copper%20layers%20with%20gradient%20microstructure&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Liao,%20Qiang&rft.date=2010-02-01&rft.volume=17&rft.issue=1&rft.spage=69&rft.epage=74&rft.pages=69-74&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-010-0112-3&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201001012%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920329349&rft_id=info:pmid/&rft_cqvip_id=33042442&rft_wanfj_id=bjkjdxxb_e201001012&rfr_iscdi=true