Loading…
Mechanical properties of electroformed copper layers with gradient microstructure
The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were charac...
Saved in:
Published in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2010-02, Vol.17 (1), p.69-74 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3 |
container_end_page | 74 |
container_issue | 1 |
container_start_page | 69 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 17 |
creator | Liao, Qiang Zhu, Li-qun Liu, Hui-cong Li, Wei-ping |
description | The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit. |
doi_str_mv | 10.1007/s12613-010-0112-3 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201001012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33042442</cqvip_id><wanfj_id>bjkjdxxb_e201001012</wanfj_id><sourcerecordid>bjkjdxxb_e201001012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3</originalsourceid><addsrcrecordid>eNp9kVtLxDAQhYsoeP0BvhV98EGqk8s2zaMs3kARQcG3kKaT3a7dZjdp2d1_b5aKgg9CQgbmO-cwmSQ5JXBFAMR1IDQnLAMC8RKasZ3kgBS5zAiwj91Y54JnXEi5nxyGMAPIhQBxkLw-o5nqtja6SRfeLdB3NYbU2RQbNJ131vk5Vqlxi9hLG71BH9JV3U3TiddVjW2XzmvjXeh8b7re43GyZ3UT8OT7PUre727fxg_Z08v94_jmKTOckC4TBTCAUmpSUNB5LkYMudRSABNclExUUIwMRqKoDJaitNXIssKIXFNBrGZHyeXgu9Kt1e1EzVzv25ioytnnrFqvS4U0_kc8hEb6YqDjkMseQ6fmdTDYNLpF1wcV4_NCMiIjef6H_DGmkgKjkvEtRQZqO3rwaNXC13PtN4qA2m5EDRtRMV5tN6JY1NBBEyLbTtD_Ov8nOvsOmrp2sow6VWrzaesGYxc45ZyyL0AYmUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920329349</pqid></control><display><type>article</type><title>Mechanical properties of electroformed copper layers with gradient microstructure</title><source>Springer Nature</source><creator>Liao, Qiang ; Zhu, Li-qun ; Liu, Hui-cong ; Li, Wei-ping</creator><creatorcontrib>Liao, Qiang ; Zhu, Li-qun ; Liu, Hui-cong ; Li, Wei-ping</creatorcontrib><description>The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-010-0112-3</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Copper ; COPPER (PURE) ; COPPER RESOURCES ; Corrosion and Coatings ; Crystals ; Ductility ; ELECTROFORMING ; Electron microscopes ; Glass ; Grain size ; HARDNESS ; Materials Science ; MECHANICAL PROPERTIES ; Metallic Materials ; Metallurgy ; Microhardness ; Microstructure ; MICROSTRUCTURES ; Natural Materials ; Optical microscopes ; PREFERRED ORIENTATION ; PROPERTIES ; SCANNING ELECTRON MICROSCOPY ; Substrates ; Surfaces and Interfaces ; Tensile strength ; Thickness ; Thin Films ; Tribology ; Ultrasonic methods ; X-ray diffraction ; X射线衍射仪 ; 力学性能 ; 扫描电子显微镜 ; 机械性能 ; 梯度结构 ; 超声波技术</subject><ispartof>International journal of minerals, metallurgy and materials, 2010-02, Vol.17 (1), p.69-74</ispartof><rights>Journal Publishing Center of University of Science and Technology Beijing and Springer Berlin Heidelberg 2010</rights><rights>Journal Publishing Center of University of Science and Technology Beijing and Springer Berlin Heidelberg 2010.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3</citedby><cites>FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liao, Qiang</creatorcontrib><creatorcontrib>Zhu, Li-qun</creatorcontrib><creatorcontrib>Liu, Hui-cong</creatorcontrib><creatorcontrib>Li, Wei-ping</creatorcontrib><title>Mechanical properties of electroformed copper layers with gradient microstructure</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.</description><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Copper</subject><subject>COPPER (PURE)</subject><subject>COPPER RESOURCES</subject><subject>Corrosion and Coatings</subject><subject>Crystals</subject><subject>Ductility</subject><subject>ELECTROFORMING</subject><subject>Electron microscopes</subject><subject>Glass</subject><subject>Grain size</subject><subject>HARDNESS</subject><subject>Materials Science</subject><subject>MECHANICAL PROPERTIES</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>MICROSTRUCTURES</subject><subject>Natural Materials</subject><subject>Optical microscopes</subject><subject>PREFERRED ORIENTATION</subject><subject>PROPERTIES</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Tensile strength</subject><subject>Thickness</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>Ultrasonic methods</subject><subject>X-ray diffraction</subject><subject>X射线衍射仪</subject><subject>力学性能</subject><subject>扫描电子显微镜</subject><subject>机械性能</subject><subject>梯度结构</subject><subject>超声波技术</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kVtLxDAQhYsoeP0BvhV98EGqk8s2zaMs3kARQcG3kKaT3a7dZjdp2d1_b5aKgg9CQgbmO-cwmSQ5JXBFAMR1IDQnLAMC8RKasZ3kgBS5zAiwj91Y54JnXEi5nxyGMAPIhQBxkLw-o5nqtja6SRfeLdB3NYbU2RQbNJ131vk5Vqlxi9hLG71BH9JV3U3TiddVjW2XzmvjXeh8b7re43GyZ3UT8OT7PUre727fxg_Z08v94_jmKTOckC4TBTCAUmpSUNB5LkYMudRSABNclExUUIwMRqKoDJaitNXIssKIXFNBrGZHyeXgu9Kt1e1EzVzv25ioytnnrFqvS4U0_kc8hEb6YqDjkMseQ6fmdTDYNLpF1wcV4_NCMiIjef6H_DGmkgKjkvEtRQZqO3rwaNXC13PtN4qA2m5EDRtRMV5tN6JY1NBBEyLbTtD_Ov8nOvsOmrp2sow6VWrzaesGYxc45ZyyL0AYmUI</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Liao, Qiang</creator><creator>Zhu, Li-qun</creator><creator>Liu, Hui-cong</creator><creator>Li, Wei-ping</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>School of Materials Science and Engineering,Beihang University,Beijing 100191,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20100201</creationdate><title>Mechanical properties of electroformed copper layers with gradient microstructure</title><author>Liao, Qiang ; Zhu, Li-qun ; Liu, Hui-cong ; Li, Wei-ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Copper</topic><topic>COPPER (PURE)</topic><topic>COPPER RESOURCES</topic><topic>Corrosion and Coatings</topic><topic>Crystals</topic><topic>Ductility</topic><topic>ELECTROFORMING</topic><topic>Electron microscopes</topic><topic>Glass</topic><topic>Grain size</topic><topic>HARDNESS</topic><topic>Materials Science</topic><topic>MECHANICAL PROPERTIES</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>MICROSTRUCTURES</topic><topic>Natural Materials</topic><topic>Optical microscopes</topic><topic>PREFERRED ORIENTATION</topic><topic>PROPERTIES</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Tensile strength</topic><topic>Thickness</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>Ultrasonic methods</topic><topic>X-ray diffraction</topic><topic>X射线衍射仪</topic><topic>力学性能</topic><topic>扫描电子显微镜</topic><topic>机械性能</topic><topic>梯度结构</topic><topic>超声波技术</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Qiang</creatorcontrib><creatorcontrib>Zhu, Li-qun</creatorcontrib><creatorcontrib>Liu, Hui-cong</creatorcontrib><creatorcontrib>Li, Wei-ping</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Qiang</au><au>Zhu, Li-qun</au><au>Liu, Hui-cong</au><au>Li, Wei-ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of electroformed copper layers with gradient microstructure</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>17</volume><issue>1</issue><spage>69</spage><epage>74</epage><pages>69-74</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The electroformed copper layer with gradient microstructure was prepared using the ultrasonic technique. The microstructure of the electroformed copper layer was observed by using an optical microscope (OM) and a scanning electron microscope (SEM). The preferred orientations of the layer were characterized by X-ray diffraction (XRD). The mechanical properties were evaluated with a Vicker's hardness tester and a tensile tester. It is found the gradient microstructure consists of two main parts: the outer part (faraway substrate) with columnar crystals and the inner part (nearby substrate) with equiaxed grains. The Cu-(220) preferred orientation increases with the increasing thickness of the copper layer. The test results show that the microhardness of the electroformed copper layer decreases with increasing grain size along the growth direction and presents a gradient distribution. The tensile strength of the outer part of the electroformed copper layer is higher than that of the inner part but at the cost of ductility. Meanwhile, the integral mechanical properties of the electroformed copper with gradient microstrucmre are significantly improved in comparison with the pure copper deposit.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-010-0112-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2010-02, Vol.17 (1), p.69-74 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e201001012 |
source | Springer Nature |
subjects | Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Copper COPPER (PURE) COPPER RESOURCES Corrosion and Coatings Crystals Ductility ELECTROFORMING Electron microscopes Glass Grain size HARDNESS Materials Science MECHANICAL PROPERTIES Metallic Materials Metallurgy Microhardness Microstructure MICROSTRUCTURES Natural Materials Optical microscopes PREFERRED ORIENTATION PROPERTIES SCANNING ELECTRON MICROSCOPY Substrates Surfaces and Interfaces Tensile strength Thickness Thin Films Tribology Ultrasonic methods X-ray diffraction X射线衍射仪 力学性能 扫描电子显微镜 机械性能 梯度结构 超声波技术 |
title | Mechanical properties of electroformed copper layers with gradient microstructure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20electroformed%20copper%20layers%20with%20gradient%20microstructure&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Liao,%20Qiang&rft.date=2010-02-01&rft.volume=17&rft.issue=1&rft.spage=69&rft.epage=74&rft.pages=69-74&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-010-0112-3&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201001012%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-780300b9a1820a66753e49a9703747b37d085ce0b98dceb7bfd5f38c76a271fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920329349&rft_id=info:pmid/&rft_cqvip_id=33042442&rft_wanfj_id=bjkjdxxb_e201001012&rfr_iscdi=true |