Loading…
Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction
Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were i...
Saved in:
Published in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2012-09, Vol.19 (9), p.856-862 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433 |
---|---|
cites | cdi_FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433 |
container_end_page | 862 |
container_issue | 9 |
container_start_page | 856 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 19 |
creator | Li, Dong Lian, Fang Hou, Xin-mei Chou, Kuo-chih |
description | Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm. |
doi_str_mv | 10.1007/s12613-012-0639-6 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201209013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43157815</cqvip_id><wanfj_id>bjkjdxxb_e201209013</wanfj_id><sourcerecordid>bjkjdxxb_e201209013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdR8PcB3EVcSjQ3mUmapYh_UC2IgruQSTLtjG2mJlNan8y9T2bqFN25yb2Q75wD92TZMZBzIERcRKAcGCZAMeFMYr6V7cGASwyEvW6nnYsc50LK3Ww_xoYQLgQRe9n0yWnT1a1HM2cm2tdxFlHVBkTOi2FNH_yIfX3-7A8-jcc6PSOK5sGZRYiJS9tcB2dR-YGm7RJPnO5qP0axndYWxU53DoVNxmG2U-lpdEebeZC93Fw_X93h4ej2_upyiA2ljOFSUDD5AKzNNcgcBFSGa-nSLyFQWldaWpUF0UVFtRGFzYUtja2MHhSU5owdZGe971L7SvuxatpF8ClRlc1bY1erUjmaTkUkgTV92tPz0L4vXOz-cCpTPi8ElYmCnjKhjTG4Ss1DPdPhQwFR6wpUX4FKvmpdgeJJQ3tNTKwfu_Dn_J_oZBM0af34Pel-k3IGhRhAwb4BZheTsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919465729</pqid></control><display><type>article</type><title>Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction</title><source>Springer Nature</source><creator>Li, Dong ; Lian, Fang ; Hou, Xin-mei ; Chou, Kuo-chih</creator><creatorcontrib>Li, Dong ; Lian, Fang ; Hou, Xin-mei ; Chou, Kuo-chih</creatorcontrib><description>Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-012-0639-6</identifier><language>eng</language><publisher>Springer Berlin Heidelberg: University of Science and Technology Beijing</publisher><subject>Calorimetry ; Ceramics ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Decomposition reactions ; Diffraction patterns ; Emission analysis ; FESEM ; Field emission microscopy ; Fourier transforms ; Glass ; Heating ; Infrared spectroscopy ; Lithium ; Manganese ; Materials Science ; Metallic Materials ; Natural Materials ; Precursors ; Reaction mechanisms ; Solid state ; Surfaces and Interfaces ; Thermogravimetric analysis ; Thin Films ; Tribology ; X-ray diffraction ; X-射线衍射 ; 低热固相反应 ; 傅里叶变换红外光谱 ; 前驱物 ; 反应机制 ; 场发射扫描电子显微镜 ; 差示扫描量热法</subject><ispartof>International journal of minerals, metallurgy and materials, 2012-09, Vol.19 (9), p.856-862</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433</citedby><cites>FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Lian, Fang</creatorcontrib><creatorcontrib>Hou, Xin-mei</creatorcontrib><creatorcontrib>Chou, Kuo-chih</creatorcontrib><title>Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.</description><subject>Calorimetry</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Decomposition reactions</subject><subject>Diffraction patterns</subject><subject>Emission analysis</subject><subject>FESEM</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Heating</subject><subject>Infrared spectroscopy</subject><subject>Lithium</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Precursors</subject><subject>Reaction mechanisms</subject><subject>Solid state</subject><subject>Surfaces and Interfaces</subject><subject>Thermogravimetric analysis</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>X-ray diffraction</subject><subject>X-射线衍射</subject><subject>低热固相反应</subject><subject>傅里叶变换红外光谱</subject><subject>前驱物</subject><subject>反应机制</subject><subject>场发射扫描电子显微镜</subject><subject>差示扫描量热法</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KAzEUhQdR8PcB3EVcSjQ3mUmapYh_UC2IgruQSTLtjG2mJlNan8y9T2bqFN25yb2Q75wD92TZMZBzIERcRKAcGCZAMeFMYr6V7cGASwyEvW6nnYsc50LK3Ww_xoYQLgQRe9n0yWnT1a1HM2cm2tdxFlHVBkTOi2FNH_yIfX3-7A8-jcc6PSOK5sGZRYiJS9tcB2dR-YGm7RJPnO5qP0axndYWxU53DoVNxmG2U-lpdEebeZC93Fw_X93h4ej2_upyiA2ljOFSUDD5AKzNNcgcBFSGa-nSLyFQWldaWpUF0UVFtRGFzYUtja2MHhSU5owdZGe971L7SvuxatpF8ClRlc1bY1erUjmaTkUkgTV92tPz0L4vXOz-cCpTPi8ElYmCnjKhjTG4Ss1DPdPhQwFR6wpUX4FKvmpdgeJJQ3tNTKwfu_Dn_J_oZBM0af34Pel-k3IGhRhAwb4BZheTsg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Li, Dong</creator><creator>Lian, Fang</creator><creator>Hou, Xin-mei</creator><creator>Chou, Kuo-chih</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China%Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China%School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China</general><general>Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120901</creationdate><title>Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction</title><author>Li, Dong ; Lian, Fang ; Hou, Xin-mei ; Chou, Kuo-chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Calorimetry</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Decomposition reactions</topic><topic>Diffraction patterns</topic><topic>Emission analysis</topic><topic>FESEM</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Heating</topic><topic>Infrared spectroscopy</topic><topic>Lithium</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Precursors</topic><topic>Reaction mechanisms</topic><topic>Solid state</topic><topic>Surfaces and Interfaces</topic><topic>Thermogravimetric analysis</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>X-ray diffraction</topic><topic>X-射线衍射</topic><topic>低热固相反应</topic><topic>傅里叶变换红外光谱</topic><topic>前驱物</topic><topic>反应机制</topic><topic>场发射扫描电子显微镜</topic><topic>差示扫描量热法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Lian, Fang</creatorcontrib><creatorcontrib>Hou, Xin-mei</creatorcontrib><creatorcontrib>Chou, Kuo-chih</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dong</au><au>Lian, Fang</au><au>Hou, Xin-mei</au><au>Chou, Kuo-chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>19</volume><issue>9</issue><spage>856</spage><epage>862</epage><pages>856-862</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.</abstract><cop>Springer Berlin Heidelberg</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-012-0639-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2012-09, Vol.19 (9), p.856-862 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e201209013 |
source | Springer Nature |
subjects | Calorimetry Ceramics Characterization and Evaluation of Materials Chemical synthesis Chemistry and Materials Science Composites Corrosion and Coatings Decomposition reactions Diffraction patterns Emission analysis FESEM Field emission microscopy Fourier transforms Glass Heating Infrared spectroscopy Lithium Manganese Materials Science Metallic Materials Natural Materials Precursors Reaction mechanisms Solid state Surfaces and Interfaces Thermogravimetric analysis Thin Films Tribology X-ray diffraction X-射线衍射 低热固相反应 傅里叶变换红外光谱 前驱物 反应机制 场发射扫描电子显微镜 差示扫描量热法 |
title | Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20mechanisms%20for%200.5Li2MnO3%C2%B70.5LiMn0.5Ni0.5O2%20precursor%20prepared%20by%20low-heating%20solid%20state%20reaction&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Li,%20Dong&rft.date=2012-09-01&rft.volume=19&rft.issue=9&rft.spage=856&rft.epage=862&rft.pages=856-862&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-012-0639-6&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201209013%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919465729&rft_id=info:pmid/&rft_cqvip_id=43157815&rft_wanfj_id=bjkjdxxb_e201209013&rfr_iscdi=true |