Loading…

Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction

Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of minerals, metallurgy and materials metallurgy and materials, 2012-09, Vol.19 (9), p.856-862
Main Authors: Li, Dong, Lian, Fang, Hou, Xin-mei, Chou, Kuo-chih
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433
cites cdi_FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433
container_end_page 862
container_issue 9
container_start_page 856
container_title International journal of minerals, metallurgy and materials
container_volume 19
creator Li, Dong
Lian, Fang
Hou, Xin-mei
Chou, Kuo-chih
description Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.
doi_str_mv 10.1007/s12613-012-0639-6
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201209013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43157815</cqvip_id><wanfj_id>bjkjdxxb_e201209013</wanfj_id><sourcerecordid>bjkjdxxb_e201209013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhQdR8PcB3EVcSjQ3mUmapYh_UC2IgruQSTLtjG2mJlNan8y9T2bqFN25yb2Q75wD92TZMZBzIERcRKAcGCZAMeFMYr6V7cGASwyEvW6nnYsc50LK3Ww_xoYQLgQRe9n0yWnT1a1HM2cm2tdxFlHVBkTOi2FNH_yIfX3-7A8-jcc6PSOK5sGZRYiJS9tcB2dR-YGm7RJPnO5qP0axndYWxU53DoVNxmG2U-lpdEebeZC93Fw_X93h4ej2_upyiA2ljOFSUDD5AKzNNcgcBFSGa-nSLyFQWldaWpUF0UVFtRGFzYUtja2MHhSU5owdZGe971L7SvuxatpF8ClRlc1bY1erUjmaTkUkgTV92tPz0L4vXOz-cCpTPi8ElYmCnjKhjTG4Ss1DPdPhQwFR6wpUX4FKvmpdgeJJQ3tNTKwfu_Dn_J_oZBM0af34Pel-k3IGhRhAwb4BZheTsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919465729</pqid></control><display><type>article</type><title>Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction</title><source>Springer Nature</source><creator>Li, Dong ; Lian, Fang ; Hou, Xin-mei ; Chou, Kuo-chih</creator><creatorcontrib>Li, Dong ; Lian, Fang ; Hou, Xin-mei ; Chou, Kuo-chih</creatorcontrib><description>Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-012-0639-6</identifier><language>eng</language><publisher>Springer Berlin Heidelberg: University of Science and Technology Beijing</publisher><subject>Calorimetry ; Ceramics ; Characterization and Evaluation of Materials ; Chemical synthesis ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Decomposition reactions ; Diffraction patterns ; Emission analysis ; FESEM ; Field emission microscopy ; Fourier transforms ; Glass ; Heating ; Infrared spectroscopy ; Lithium ; Manganese ; Materials Science ; Metallic Materials ; Natural Materials ; Precursors ; Reaction mechanisms ; Solid state ; Surfaces and Interfaces ; Thermogravimetric analysis ; Thin Films ; Tribology ; X-ray diffraction ; X-射线衍射 ; 低热固相反应 ; 傅里叶变换红外光谱 ; 前驱物 ; 反应机制 ; 场发射扫描电子显微镜 ; 差示扫描量热法</subject><ispartof>International journal of minerals, metallurgy and materials, 2012-09, Vol.19 (9), p.856-862</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2012.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433</citedby><cites>FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Lian, Fang</creatorcontrib><creatorcontrib>Hou, Xin-mei</creatorcontrib><creatorcontrib>Chou, Kuo-chih</creatorcontrib><title>Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.</description><subject>Calorimetry</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Decomposition reactions</subject><subject>Diffraction patterns</subject><subject>Emission analysis</subject><subject>FESEM</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Heating</subject><subject>Infrared spectroscopy</subject><subject>Lithium</subject><subject>Manganese</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Precursors</subject><subject>Reaction mechanisms</subject><subject>Solid state</subject><subject>Surfaces and Interfaces</subject><subject>Thermogravimetric analysis</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>X-ray diffraction</subject><subject>X-射线衍射</subject><subject>低热固相反应</subject><subject>傅里叶变换红外光谱</subject><subject>前驱物</subject><subject>反应机制</subject><subject>场发射扫描电子显微镜</subject><subject>差示扫描量热法</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KAzEUhQdR8PcB3EVcSjQ3mUmapYh_UC2IgruQSTLtjG2mJlNan8y9T2bqFN25yb2Q75wD92TZMZBzIERcRKAcGCZAMeFMYr6V7cGASwyEvW6nnYsc50LK3Ww_xoYQLgQRe9n0yWnT1a1HM2cm2tdxFlHVBkTOi2FNH_yIfX3-7A8-jcc6PSOK5sGZRYiJS9tcB2dR-YGm7RJPnO5qP0axndYWxU53DoVNxmG2U-lpdEebeZC93Fw_X93h4ej2_upyiA2ljOFSUDD5AKzNNcgcBFSGa-nSLyFQWldaWpUF0UVFtRGFzYUtja2MHhSU5owdZGe971L7SvuxatpF8ClRlc1bY1erUjmaTkUkgTV92tPz0L4vXOz-cCpTPi8ElYmCnjKhjTG4Ss1DPdPhQwFR6wpUX4FKvmpdgeJJQ3tNTKwfu_Dn_J_oZBM0af34Pel-k3IGhRhAwb4BZheTsg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Li, Dong</creator><creator>Lian, Fang</creator><creator>Hou, Xin-mei</creator><creator>Chou, Kuo-chih</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China%Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China%School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China</general><general>Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20120901</creationdate><title>Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction</title><author>Li, Dong ; Lian, Fang ; Hou, Xin-mei ; Chou, Kuo-chih</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Calorimetry</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Decomposition reactions</topic><topic>Diffraction patterns</topic><topic>Emission analysis</topic><topic>FESEM</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Heating</topic><topic>Infrared spectroscopy</topic><topic>Lithium</topic><topic>Manganese</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Precursors</topic><topic>Reaction mechanisms</topic><topic>Solid state</topic><topic>Surfaces and Interfaces</topic><topic>Thermogravimetric analysis</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>X-ray diffraction</topic><topic>X-射线衍射</topic><topic>低热固相反应</topic><topic>傅里叶变换红外光谱</topic><topic>前驱物</topic><topic>反应机制</topic><topic>场发射扫描电子显微镜</topic><topic>差示扫描量热法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Lian, Fang</creatorcontrib><creatorcontrib>Hou, Xin-mei</creatorcontrib><creatorcontrib>Chou, Kuo-chih</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dong</au><au>Lian, Fang</au><au>Hou, Xin-mei</au><au>Chou, Kuo-chih</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>19</volume><issue>9</issue><spage>856</spage><epage>862</epage><pages>856-862</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>Lithium-excess manganese layered oxides, which are commonly described in chemical formula 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2, were prepared by low-heating solid state reaction. The reaction mechanisms of synthesizing precursors, the decomposition mechanism, and intermediate materials in calcination were investigated by means of Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The major diffraction patterns of 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 powder calcinated at 720℃ for 15 h are indexed to the hexagonal structure with a space group of R3m, and the clear splits of doublets at (006)/(102) and (108)/(110) indicate that the sample adopts a well-layered structure. FESEM images show that the size of the agglomerated particles of the sample ranges from 100 to 300 nm.</abstract><cop>Springer Berlin Heidelberg</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-012-0639-6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2012-09, Vol.19 (9), p.856-862
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201209013
source Springer Nature
subjects Calorimetry
Ceramics
Characterization and Evaluation of Materials
Chemical synthesis
Chemistry and Materials Science
Composites
Corrosion and Coatings
Decomposition reactions
Diffraction patterns
Emission analysis
FESEM
Field emission microscopy
Fourier transforms
Glass
Heating
Infrared spectroscopy
Lithium
Manganese
Materials Science
Metallic Materials
Natural Materials
Precursors
Reaction mechanisms
Solid state
Surfaces and Interfaces
Thermogravimetric analysis
Thin Films
Tribology
X-ray diffraction
X-射线衍射
低热固相反应
傅里叶变换红外光谱
前驱物
反应机制
场发射扫描电子显微镜
差示扫描量热法
title Reaction mechanisms for 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 precursor prepared by low-heating solid state reaction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20mechanisms%20for%200.5Li2MnO3%C2%B70.5LiMn0.5Ni0.5O2%20precursor%20prepared%20by%20low-heating%20solid%20state%20reaction&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Li,%20Dong&rft.date=2012-09-01&rft.volume=19&rft.issue=9&rft.spage=856&rft.epage=862&rft.pages=856-862&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-012-0639-6&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201209013%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2233-b721c481dd4a194171fc6a9ec22001bdebd2fb50a5f2ac75d47dbcdfca8522433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919465729&rft_id=info:pmid/&rft_cqvip_id=43157815&rft_wanfj_id=bjkjdxxb_e201209013&rfr_iscdi=true