Loading…

Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution

The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments,followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses.The results show that X100 steel exhibits an obvious pi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of minerals, metallurgy and materials metallurgy and materials, 2016-02, Vol.23 (2), p.176-183
Main Authors: Du, Cui-wei, Zhao, Tian-liang, Liu, Zhi-yong, Li, Xiao-gang, Zhang, Da-wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-324d95c1bc9d68799cd9f204ffbc87d01f99df18301c40f1d0a9489ebc4a78113
cites cdi_FETCH-LOGICAL-c412t-324d95c1bc9d68799cd9f204ffbc87d01f99df18301c40f1d0a9489ebc4a78113
container_end_page 183
container_issue 2
container_start_page 176
container_title International journal of minerals, metallurgy and materials
container_volume 23
creator Du, Cui-wei
Zhao, Tian-liang
Liu, Zhi-yong
Li, Xiao-gang
Zhang, Da-wei
description The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments,followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses.The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment.Pits nucleate after approximately 10 h of immersion.Along with the nucleation and growth of the pits,the charge-transfer resistance and open-circuit potential first increase sharply,then decrease slowly,and eventually reach a steady state.The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h.The evolution of the electrochemical process is confirmed by the analysis of the product film.The product film exhibits a porous and loose structure and could not protect the substrate well.The product film is primarily composed of ferrous carbonate and ferrous hydroxide(Fe(OH)2).The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.
doi_str_mv 10.1007/s12613-016-1225-0
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201602008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668236985</cqvip_id><wanfj_id>bjkjdxxb_e201602008</wanfj_id><sourcerecordid>bjkjdxxb_e201602008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-324d95c1bc9d68799cd9f204ffbc87d01f99df18301c40f1d0a9489ebc4a78113</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhQtRcBz9Ae6CbgQpvTdVncdyaHwMDOhCYXYhlUd32upkJknp-O9NU8MILtwk4fLdc07u7bqXCO8QgL8vSBkOPSDrkdJND4-6MxRM9gjD9eP2ZnzsRy7l0-5ZKQcAxjnwsy5uU86phBTJ5Pb6Z0iZ6GiJ2eusTXU5lBpMIcmTunfkJie7mEp8mI-n2sXXS3LdApBSnZtJiESbYIMhJRyXWVdnSUlhbse81GbyvHvi9Vzci_v7vPv-8cO37ef-6suny-3FVW9GpLUf6GjlxuBkpGWipTZWegqj95MR3AJ6Ka1HMQCaETxa0HIU0k1m1FwgDufd21X3l45ex506pCXH5qimw4-DvbublKNtWEABRKPfrHT73u3iSlXHUIybZx1dWopCAU0UGYWGvv4HfVCmkgJlGz6yRuFKmTbbkp1XNzkcdf6tENRpX2rdl2oR1Glf6qRM157S2Lhz-a_y_5pe3RvtU9zdtr4HJ8YEHZgUm-EPPbyirw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920265746</pqid></control><display><type>article</type><title>Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution</title><source>Springer Nature</source><creator>Du, Cui-wei ; Zhao, Tian-liang ; Liu, Zhi-yong ; Li, Xiao-gang ; Zhang, Da-wei</creator><creatorcontrib>Du, Cui-wei ; Zhao, Tian-liang ; Liu, Zhi-yong ; Li, Xiao-gang ; Zhang, Da-wei</creatorcontrib><description>The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments,followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses.The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment.Pits nucleate after approximately 10 h of immersion.Along with the nucleation and growth of the pits,the charge-transfer resistance and open-circuit potential first increase sharply,then decrease slowly,and eventually reach a steady state.The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h.The evolution of the electrochemical process is confirmed by the analysis of the product film.The product film exhibits a porous and loose structure and could not protect the substrate well.The product film is primarily composed of ferrous carbonate and ferrous hydroxide(Fe(OH)2).The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-016-1225-0</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Acidic soils ; API ; Ceramics ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Composites ; Corrosion ; Corrosion and Coatings ; Corrosion products ; Corrosion tests ; Electrochemistry ; Ferrous hydroxide ; Fe(OH)2 ; Glass ; High strength low alloy steels ; Iron carbonate ; Materials Science ; Metallic Materials ; Natural Materials ; Nucleation ; Open circuit voltage ; Photoelectrons ; Pits ; Pitting (corrosion) ; Simulation ; Soil (material) ; Soil environment ; Soil investigations ; Soil solution ; Soils ; Structural steels ; Substrates ; Surfaces and Interfaces ; Thin Films ; Tribology ; X ray photoelectron spectroscopy ; X射线光电子能谱分析 ; 模拟溶液 ; 腐蚀行为 ; 膜 ; 酸性土壤 ; 钢产品</subject><ispartof>International journal of minerals, metallurgy and materials, 2016-02, Vol.23 (2), p.176-183</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2016</rights><rights>University of Science and Technology Beijing and Springer-Verlag Berlin Heidelberg 2016.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-324d95c1bc9d68799cd9f204ffbc87d01f99df18301c40f1d0a9489ebc4a78113</citedby><cites>FETCH-LOGICAL-c412t-324d95c1bc9d68799cd9f204ffbc87d01f99df18301c40f1d0a9489ebc4a78113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85313A/85313A.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Du, Cui-wei</creatorcontrib><creatorcontrib>Zhao, Tian-liang</creatorcontrib><creatorcontrib>Liu, Zhi-yong</creatorcontrib><creatorcontrib>Li, Xiao-gang</creatorcontrib><creatorcontrib>Zhang, Da-wei</creatorcontrib><title>Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><description>The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments,followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses.The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment.Pits nucleate after approximately 10 h of immersion.Along with the nucleation and growth of the pits,the charge-transfer resistance and open-circuit potential first increase sharply,then decrease slowly,and eventually reach a steady state.The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h.The evolution of the electrochemical process is confirmed by the analysis of the product film.The product film exhibits a porous and loose structure and could not protect the substrate well.The product film is primarily composed of ferrous carbonate and ferrous hydroxide(Fe(OH)2).The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.</description><subject>Acidic soils</subject><subject>API</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion</subject><subject>Corrosion and Coatings</subject><subject>Corrosion products</subject><subject>Corrosion tests</subject><subject>Electrochemistry</subject><subject>Ferrous hydroxide</subject><subject>Fe(OH)2</subject><subject>Glass</subject><subject>High strength low alloy steels</subject><subject>Iron carbonate</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Nucleation</subject><subject>Open circuit voltage</subject><subject>Photoelectrons</subject><subject>Pits</subject><subject>Pitting (corrosion)</subject><subject>Simulation</subject><subject>Soil (material)</subject><subject>Soil environment</subject><subject>Soil investigations</subject><subject>Soil solution</subject><subject>Soils</subject><subject>Structural steels</subject><subject>Substrates</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>X ray photoelectron spectroscopy</subject><subject>X射线光电子能谱分析</subject><subject>模拟溶液</subject><subject>腐蚀行为</subject><subject>膜</subject><subject>酸性土壤</subject><subject>钢产品</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kUuLFDEUhQtRcBz9Ae6CbgQpvTdVncdyaHwMDOhCYXYhlUd32upkJknp-O9NU8MILtwk4fLdc07u7bqXCO8QgL8vSBkOPSDrkdJND4-6MxRM9gjD9eP2ZnzsRy7l0-5ZKQcAxjnwsy5uU86phBTJ5Pb6Z0iZ6GiJ2eusTXU5lBpMIcmTunfkJie7mEp8mI-n2sXXS3LdApBSnZtJiESbYIMhJRyXWVdnSUlhbse81GbyvHvi9Vzci_v7vPv-8cO37ef-6suny-3FVW9GpLUf6GjlxuBkpGWipTZWegqj95MR3AJ6Ka1HMQCaETxa0HIU0k1m1FwgDufd21X3l45ex506pCXH5qimw4-DvbublKNtWEABRKPfrHT73u3iSlXHUIybZx1dWopCAU0UGYWGvv4HfVCmkgJlGz6yRuFKmTbbkp1XNzkcdf6tENRpX2rdl2oR1Glf6qRM157S2Lhz-a_y_5pe3RvtU9zdtr4HJ8YEHZgUm-EPPbyirw</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Du, Cui-wei</creator><creator>Zhao, Tian-liang</creator><creator>Liu, Zhi-yong</creator><creator>Li, Xiao-gang</creator><creator>Zhang, Da-wei</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China</general><general>Key Laboratory of Chinese Ministry of Education for Corrosion end Prevention, University of Science and Technology Beijing, Beijing 100083, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SE</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160201</creationdate><title>Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution</title><author>Du, Cui-wei ; Zhao, Tian-liang ; Liu, Zhi-yong ; Li, Xiao-gang ; Zhang, Da-wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-324d95c1bc9d68799cd9f204ffbc87d01f99df18301c40f1d0a9489ebc4a78113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acidic soils</topic><topic>API</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion</topic><topic>Corrosion and Coatings</topic><topic>Corrosion products</topic><topic>Corrosion tests</topic><topic>Electrochemistry</topic><topic>Ferrous hydroxide</topic><topic>Fe(OH)2</topic><topic>Glass</topic><topic>High strength low alloy steels</topic><topic>Iron carbonate</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Nucleation</topic><topic>Open circuit voltage</topic><topic>Photoelectrons</topic><topic>Pits</topic><topic>Pitting (corrosion)</topic><topic>Simulation</topic><topic>Soil (material)</topic><topic>Soil environment</topic><topic>Soil investigations</topic><topic>Soil solution</topic><topic>Soils</topic><topic>Structural steels</topic><topic>Substrates</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>X ray photoelectron spectroscopy</topic><topic>X射线光电子能谱分析</topic><topic>模拟溶液</topic><topic>腐蚀行为</topic><topic>膜</topic><topic>酸性土壤</topic><topic>钢产品</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Cui-wei</creatorcontrib><creatorcontrib>Zhao, Tian-liang</creatorcontrib><creatorcontrib>Liu, Zhi-yong</creatorcontrib><creatorcontrib>Li, Xiao-gang</creatorcontrib><creatorcontrib>Zhang, Da-wei</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Cui-wei</au><au>Zhao, Tian-liang</au><au>Liu, Zhi-yong</au><au>Li, Xiao-gang</au><au>Zhang, Da-wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><addtitle>International Journal of Minerals,Metallurgy and Materials</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>23</volume><issue>2</issue><spage>176</spage><epage>183</epage><pages>176-183</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The short-term corrosion behavior of API X100 steel in an acidic simulated soil was investigated by electrochemical measurements and soaking experiments,followed by corrosion morphology observations and X-ray photoelectron spectroscopy analyses.The results show that X100 steel exhibits an obvious pitting susceptibility in an acidic soil environment.Pits nucleate after approximately 10 h of immersion.Along with the nucleation and growth of the pits,the charge-transfer resistance and open-circuit potential first increase sharply,then decrease slowly,and eventually reach a steady state.The maxima of the charge-transfer resistance and open-circuit potential are attained at approximately 10 h.The evolution of the electrochemical process is confirmed by the analysis of the product film.The product film exhibits a porous and loose structure and could not protect the substrate well.The product film is primarily composed of ferrous carbonate and ferrous hydroxide(Fe(OH)2).The concentration of Fe(OH)2 in the product film increases from the inside to the outside layer.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-016-1225-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2016-02, Vol.23 (2), p.176-183
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201602008
source Springer Nature
subjects Acidic soils
API
Ceramics
Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Composites
Corrosion
Corrosion and Coatings
Corrosion products
Corrosion tests
Electrochemistry
Ferrous hydroxide
Fe(OH)2
Glass
High strength low alloy steels
Iron carbonate
Materials Science
Metallic Materials
Natural Materials
Nucleation
Open circuit voltage
Photoelectrons
Pits
Pitting (corrosion)
Simulation
Soil (material)
Soil environment
Soil investigations
Soil solution
Soils
Structural steels
Substrates
Surfaces and Interfaces
Thin Films
Tribology
X ray photoelectron spectroscopy
X射线光电子能谱分析
模拟溶液
腐蚀行为

酸性土壤
钢产品
title Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T19%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20behavior%20and%20characteristics%20of%20the%20product%20film%20of%20API%20X100%20steel%20in%20acidic%20simulated%20soil%20solution&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Du,%20Cui-wei&rft.date=2016-02-01&rft.volume=23&rft.issue=2&rft.spage=176&rft.epage=183&rft.pages=176-183&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-016-1225-0&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201602008%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-324d95c1bc9d68799cd9f204ffbc87d01f99df18301c40f1d0a9489ebc4a78113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920265746&rft_id=info:pmid/&rft_cqvip_id=668236985&rft_wanfj_id=bjkjdxxb_e201602008&rfr_iscdi=true