Loading…
Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore
Ultrafine barium hexaferrite(BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe(~99.7%) under the...
Saved in:
Published in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2016-09, Vol.23 (9), p.991-1000 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultrafine barium hexaferrite(BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe(~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe^3+/Ba^2+ molar ratio and the addition of hydrogen peroxide(H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe(12)O(19) powder was obtained at an Fe^3+/Ba^2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization(48.3 A×m^2×kg^–1) was achieved in the material prepared at an Fe^3+/Ba^2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure. |
---|---|
ISSN: | 1674-4799 1869-103X |
DOI: | 10.1007/s12613-016-1316-y |