Loading…

Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation

The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s −1 on a Gleeble 3500 thermo-simulation machine. The results showed that the softening de...

Full description

Saved in:
Bibliographic Details
Published in:International journal of minerals, metallurgy and materials metallurgy and materials, 2019-05, Vol.26 (5), p.657-663
Main Authors: Fang, Bin, Tian, Gao-feng, Ji, Zhen, Wang, Meng-ya, Jia, Cheng-chang, Yang, Shan-wu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193
cites cdi_FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193
container_end_page 663
container_issue 5
container_start_page 657
container_title International journal of minerals, metallurgy and materials
container_volume 26
creator Fang, Bin
Tian, Gao-feng
Ji, Zhen
Wang, Meng-ya
Jia, Cheng-chang
Yang, Shan-wu
description The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s −1 on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress-true strain curves showed that single-peak dynamic recrystallization, multi- peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s −1 , respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease.
doi_str_mv 10.1007/s12613-019-1774-0
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201905014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e201905014</wanfj_id><sourcerecordid>bjkjdxxb_e201905014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoso-PkDvAU8SnWmaZrmKOIXCB5U8BbSJHW77jZrkuquv96UCnrxEDIzed438E6WHSOcIQA_D1hUSHNAkSPnZQ5b2R7WVeqAvmynukrDkguxm-2HMAeoOAe-l309xsFsiOtJnNnx-KVaEGNbl4rYpXljZ-qjc56o3pBlp70L0Q86Dt4S15Lrm1tRkZlVkdh1egijRi0WbkPM4Lv-lcRPl69UCGTm4l_nw2ynVYtgj37ug-z5-urp8ja_f7i5u7y4zzVlRcyVoAyZbmmhG844Z0oDM7zWWtSU1abUBpuWlqptREJMVaI1HNDWCKhQ0IPsdPL9VH2r-lc5d4Pv04-ymb_NzXrdSFuk4IABlok-meiVd--DDfEXL0Ryq4FRmiicqDGO4G0rV75bKr-RCHJciJwWIpOvHBciIWmKSRNWYy7W_zr_L_oGKumPkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919380533</pqid></control><display><type>article</type><title>Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation</title><source>Springer Nature</source><creator>Fang, Bin ; Tian, Gao-feng ; Ji, Zhen ; Wang, Meng-ya ; Jia, Cheng-chang ; Yang, Shan-wu</creator><creatorcontrib>Fang, Bin ; Tian, Gao-feng ; Ji, Zhen ; Wang, Meng-ya ; Jia, Cheng-chang ; Yang, Shan-wu</creatorcontrib><description>The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s −1 on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress-true strain curves showed that single-peak dynamic recrystallization, multi- peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s −1 , respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-019-1774-0</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Boundaries ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Crystallization ; Deformation ; Dynamic recrystallization ; Dynamic response ; Glass ; Grain boundaries ; Grain size ; Materials Science ; Metallic Materials ; Natural Materials ; Nickel base alloys ; Strain ; Strain rate ; Stress-strain curves ; Superalloys ; Surfaces and Interfaces ; Temperature ; Thermal simulation ; Thin Films ; Tribology ; True strain ; True stress</subject><ispartof>International journal of minerals, metallurgy and materials, 2019-05, Vol.26 (5), p.657-663</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193</citedby><cites>FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Tian, Gao-feng</creatorcontrib><creatorcontrib>Ji, Zhen</creatorcontrib><creatorcontrib>Wang, Meng-ya</creatorcontrib><creatorcontrib>Jia, Cheng-chang</creatorcontrib><creatorcontrib>Yang, Shan-wu</creatorcontrib><title>Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s −1 on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress-true strain curves showed that single-peak dynamic recrystallization, multi- peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s −1 , respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease.</description><subject>Boundaries</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Crystallization</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Dynamic response</subject><subject>Glass</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Nickel base alloys</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Stress-strain curves</subject><subject>Superalloys</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Thermal simulation</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>True strain</subject><subject>True stress</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhoso-PkDvAU8SnWmaZrmKOIXCB5U8BbSJHW77jZrkuquv96UCnrxEDIzed438E6WHSOcIQA_D1hUSHNAkSPnZQ5b2R7WVeqAvmynukrDkguxm-2HMAeoOAe-l309xsFsiOtJnNnx-KVaEGNbl4rYpXljZ-qjc56o3pBlp70L0Q86Dt4S15Lrm1tRkZlVkdh1egijRi0WbkPM4Lv-lcRPl69UCGTm4l_nw2ynVYtgj37ug-z5-urp8ja_f7i5u7y4zzVlRcyVoAyZbmmhG844Z0oDM7zWWtSU1abUBpuWlqptREJMVaI1HNDWCKhQ0IPsdPL9VH2r-lc5d4Pv04-ymb_NzXrdSFuk4IABlok-meiVd--DDfEXL0Ryq4FRmiicqDGO4G0rV75bKr-RCHJciJwWIpOvHBciIWmKSRNWYy7W_zr_L_oGKumPkQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Fang, Bin</creator><creator>Tian, Gao-feng</creator><creator>Ji, Zhen</creator><creator>Wang, Meng-ya</creator><creator>Jia, Cheng-chang</creator><creator>Yang, Shan-wu</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China%Beijing Institute of Aeronautical Materials, Beijing 100095, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190501</creationdate><title>Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation</title><author>Fang, Bin ; Tian, Gao-feng ; Ji, Zhen ; Wang, Meng-ya ; Jia, Cheng-chang ; Yang, Shan-wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundaries</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Crystallization</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Dynamic response</topic><topic>Glass</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Nickel base alloys</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Stress-strain curves</topic><topic>Superalloys</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Thermal simulation</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>True strain</topic><topic>True stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Tian, Gao-feng</creatorcontrib><creatorcontrib>Ji, Zhen</creatorcontrib><creatorcontrib>Wang, Meng-ya</creatorcontrib><creatorcontrib>Jia, Cheng-chang</creatorcontrib><creatorcontrib>Yang, Shan-wu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Bin</au><au>Tian, Gao-feng</au><au>Ji, Zhen</au><au>Wang, Meng-ya</au><au>Jia, Cheng-chang</au><au>Yang, Shan-wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><spage>657</spage><epage>663</epage><pages>657-663</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s −1 on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress-true strain curves showed that single-peak dynamic recrystallization, multi- peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s −1 , respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-019-1774-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4799
ispartof International journal of minerals, metallurgy and materials, 2019-05, Vol.26 (5), p.657-663
issn 1674-4799
1869-103X
language eng
recordid cdi_wanfang_journals_bjkjdxxb_e201905014
source Springer Nature
subjects Boundaries
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Corrosion and Coatings
Crystallization
Deformation
Dynamic recrystallization
Dynamic response
Glass
Grain boundaries
Grain size
Materials Science
Metallic Materials
Natural Materials
Nickel base alloys
Strain
Strain rate
Stress-strain curves
Superalloys
Surfaces and Interfaces
Temperature
Thermal simulation
Thin Films
Tribology
True strain
True stress
title Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20thermal%20deformation%20behavior%20and%20microstructure%20of%20FGH96%20heat%20extrusion%20alloy%20during%20two-pass%20hot%20deformation&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Fang,%20Bin&rft.date=2019-05-01&rft.volume=26&rft.issue=5&rft.spage=657&rft.epage=663&rft.pages=657-663&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-019-1774-0&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201905014%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919380533&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e201905014&rfr_iscdi=true