Loading…
Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation
The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s −1 on a Gleeble 3500 thermo-simulation machine. The results showed that the softening de...
Saved in:
Published in: | International journal of minerals, metallurgy and materials metallurgy and materials, 2019-05, Vol.26 (5), p.657-663 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193 |
container_end_page | 663 |
container_issue | 5 |
container_start_page | 657 |
container_title | International journal of minerals, metallurgy and materials |
container_volume | 26 |
creator | Fang, Bin Tian, Gao-feng Ji, Zhen Wang, Meng-ya Jia, Cheng-chang Yang, Shan-wu |
description | The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s
−1
on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress-true strain curves showed that single-peak dynamic recrystallization, multi- peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s
−1
, respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease. |
doi_str_mv | 10.1007/s12613-019-1774-0 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_bjkjdxxb_e201905014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>bjkjdxxb_e201905014</wanfj_id><sourcerecordid>bjkjdxxb_e201905014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoso-PkDvAU8SnWmaZrmKOIXCB5U8BbSJHW77jZrkuquv96UCnrxEDIzed438E6WHSOcIQA_D1hUSHNAkSPnZQ5b2R7WVeqAvmynukrDkguxm-2HMAeoOAe-l309xsFsiOtJnNnx-KVaEGNbl4rYpXljZ-qjc56o3pBlp70L0Q86Dt4S15Lrm1tRkZlVkdh1egijRi0WbkPM4Lv-lcRPl69UCGTm4l_nw2ynVYtgj37ug-z5-urp8ja_f7i5u7y4zzVlRcyVoAyZbmmhG844Z0oDM7zWWtSU1abUBpuWlqptREJMVaI1HNDWCKhQ0IPsdPL9VH2r-lc5d4Pv04-ymb_NzXrdSFuk4IABlok-meiVd--DDfEXL0Ryq4FRmiicqDGO4G0rV75bKr-RCHJciJwWIpOvHBciIWmKSRNWYy7W_zr_L_oGKumPkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919380533</pqid></control><display><type>article</type><title>Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation</title><source>Springer Nature</source><creator>Fang, Bin ; Tian, Gao-feng ; Ji, Zhen ; Wang, Meng-ya ; Jia, Cheng-chang ; Yang, Shan-wu</creator><creatorcontrib>Fang, Bin ; Tian, Gao-feng ; Ji, Zhen ; Wang, Meng-ya ; Jia, Cheng-chang ; Yang, Shan-wu</creatorcontrib><description>The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s
−1
on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress-true strain curves showed that single-peak dynamic recrystallization, multi- peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s
−1
, respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease.</description><identifier>ISSN: 1674-4799</identifier><identifier>EISSN: 1869-103X</identifier><identifier>DOI: 10.1007/s12613-019-1774-0</identifier><language>eng</language><publisher>Beijing: University of Science and Technology Beijing</publisher><subject>Boundaries ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Composites ; Corrosion and Coatings ; Crystallization ; Deformation ; Dynamic recrystallization ; Dynamic response ; Glass ; Grain boundaries ; Grain size ; Materials Science ; Metallic Materials ; Natural Materials ; Nickel base alloys ; Strain ; Strain rate ; Stress-strain curves ; Superalloys ; Surfaces and Interfaces ; Temperature ; Thermal simulation ; Thin Films ; Tribology ; True strain ; True stress</subject><ispartof>International journal of minerals, metallurgy and materials, 2019-05, Vol.26 (5), p.657-663</ispartof><rights>University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193</citedby><cites>FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/bjkjdxxb-e/bjkjdxxb-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Tian, Gao-feng</creatorcontrib><creatorcontrib>Ji, Zhen</creatorcontrib><creatorcontrib>Wang, Meng-ya</creatorcontrib><creatorcontrib>Jia, Cheng-chang</creatorcontrib><creatorcontrib>Yang, Shan-wu</creatorcontrib><title>Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation</title><title>International journal of minerals, metallurgy and materials</title><addtitle>Int J Miner Metall Mater</addtitle><description>The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s
−1
on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress-true strain curves showed that single-peak dynamic recrystallization, multi- peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s
−1
, respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease.</description><subject>Boundaries</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Corrosion and Coatings</subject><subject>Crystallization</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Dynamic response</subject><subject>Glass</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Natural Materials</subject><subject>Nickel base alloys</subject><subject>Strain</subject><subject>Strain rate</subject><subject>Stress-strain curves</subject><subject>Superalloys</subject><subject>Surfaces and Interfaces</subject><subject>Temperature</subject><subject>Thermal simulation</subject><subject>Thin Films</subject><subject>Tribology</subject><subject>True strain</subject><subject>True stress</subject><issn>1674-4799</issn><issn>1869-103X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhoso-PkDvAU8SnWmaZrmKOIXCB5U8BbSJHW77jZrkuquv96UCnrxEDIzed438E6WHSOcIQA_D1hUSHNAkSPnZQ5b2R7WVeqAvmynukrDkguxm-2HMAeoOAe-l309xsFsiOtJnNnx-KVaEGNbl4rYpXljZ-qjc56o3pBlp70L0Q86Dt4S15Lrm1tRkZlVkdh1egijRi0WbkPM4Lv-lcRPl69UCGTm4l_nw2ynVYtgj37ug-z5-urp8ja_f7i5u7y4zzVlRcyVoAyZbmmhG844Z0oDM7zWWtSU1abUBpuWlqptREJMVaI1HNDWCKhQ0IPsdPL9VH2r-lc5d4Pv04-ymb_NzXrdSFuk4IABlok-meiVd--DDfEXL0Ryq4FRmiicqDGO4G0rV75bKr-RCHJciJwWIpOvHBciIWmKSRNWYy7W_zr_L_oGKumPkQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Fang, Bin</creator><creator>Tian, Gao-feng</creator><creator>Ji, Zhen</creator><creator>Wang, Meng-ya</creator><creator>Jia, Cheng-chang</creator><creator>Yang, Shan-wu</creator><general>University of Science and Technology Beijing</general><general>Springer Nature B.V</general><general>School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China%Beijing Institute of Aeronautical Materials, Beijing 100095, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190501</creationdate><title>Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation</title><author>Fang, Bin ; Tian, Gao-feng ; Ji, Zhen ; Wang, Meng-ya ; Jia, Cheng-chang ; Yang, Shan-wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundaries</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Corrosion and Coatings</topic><topic>Crystallization</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Dynamic response</topic><topic>Glass</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Natural Materials</topic><topic>Nickel base alloys</topic><topic>Strain</topic><topic>Strain rate</topic><topic>Stress-strain curves</topic><topic>Superalloys</topic><topic>Surfaces and Interfaces</topic><topic>Temperature</topic><topic>Thermal simulation</topic><topic>Thin Films</topic><topic>Tribology</topic><topic>True strain</topic><topic>True stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Tian, Gao-feng</creatorcontrib><creatorcontrib>Ji, Zhen</creatorcontrib><creatorcontrib>Wang, Meng-ya</creatorcontrib><creatorcontrib>Jia, Cheng-chang</creatorcontrib><creatorcontrib>Yang, Shan-wu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>International journal of minerals, metallurgy and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Bin</au><au>Tian, Gao-feng</au><au>Ji, Zhen</au><au>Wang, Meng-ya</au><au>Jia, Cheng-chang</au><au>Yang, Shan-wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation</atitle><jtitle>International journal of minerals, metallurgy and materials</jtitle><stitle>Int J Miner Metall Mater</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><spage>657</spage><epage>663</epage><pages>657-663</pages><issn>1674-4799</issn><eissn>1869-103X</eissn><abstract>The change rules associated with hot deformation of FGH96 alloy were investigated by isothermal two-pass hot deformation tests in the temperature range 1050–1125°C and at strain rates ranging from 0.001 to 0.1 s
−1
on a Gleeble 3500 thermo-simulation machine. The results showed that the softening degree of the alloy between passes decreases with increasing temperature and decreasing strain rates. The critical strain of the first-pass is greater than that of the second-pass. The true stress-true strain curves showed that single-peak dynamic recrystallization, multi- peak dynamic recrystallization, and dynamic response occur when the strain rate is 0.1, 0.01, and 0.001 s
−1
, respectively. The alloy contains three different grain structures after hot deformation: partially recrystallized tissue, completely fine recrystallized tissue, coarse-grained grains. The small-angle grain boundaries increase with increasing temperature. Increasing strain rates cause the small-angle grain boundaries to first increase and then decrease.</abstract><cop>Beijing</cop><pub>University of Science and Technology Beijing</pub><doi>10.1007/s12613-019-1774-0</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4799 |
ispartof | International journal of minerals, metallurgy and materials, 2019-05, Vol.26 (5), p.657-663 |
issn | 1674-4799 1869-103X |
language | eng |
recordid | cdi_wanfang_journals_bjkjdxxb_e201905014 |
source | Springer Nature |
subjects | Boundaries Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Corrosion and Coatings Crystallization Deformation Dynamic recrystallization Dynamic response Glass Grain boundaries Grain size Materials Science Metallic Materials Natural Materials Nickel base alloys Strain Strain rate Stress-strain curves Superalloys Surfaces and Interfaces Temperature Thermal simulation Thin Films Tribology True strain True stress |
title | Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20thermal%20deformation%20behavior%20and%20microstructure%20of%20FGH96%20heat%20extrusion%20alloy%20during%20two-pass%20hot%20deformation&rft.jtitle=International%20journal%20of%20minerals,%20metallurgy%20and%20materials&rft.au=Fang,%20Bin&rft.date=2019-05-01&rft.volume=26&rft.issue=5&rft.spage=657&rft.epage=663&rft.pages=657-663&rft.issn=1674-4799&rft.eissn=1869-103X&rft_id=info:doi/10.1007/s12613-019-1774-0&rft_dat=%3Cwanfang_jour_proqu%3Ebjkjdxxb_e201905014%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-a93515cf32cb75775ac05d78cc98358d4cd1bf34afb92cbd641ed701e8101a193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2919380533&rft_id=info:pmid/&rft_wanfj_id=bjkjdxxb_e201905014&rfr_iscdi=true |