Loading…

侧扫声呐图像分割的中性集合与量子粒子群算法

针对现有的侧扫声呐图像分割方法存在分割准确率不高和效率偏低的问题,提出了一种基于中性集合和量子粒子群算法的侧扫声呐图像阈值分割方法。通过基于中性集合计算图像灰度共生矩阵,实现了侧扫声呐图像精细纹理的表达,提高了分割精度;基于二维最大熵理论,采用量子粒子群算法计算二维最优分割阈值向量,实现了分割阈值向量的快速准确获取,提高了分割效率和精度。最终实现了高噪声侧扫声呐图像目标的准确、高效分割。通过对含有不同目标的侧扫声呐图像的分割试验,验证了该算法的有效性。...

Full description

Saved in:
Bibliographic Details
Published in:测绘学报 2016, Vol.45 (8), p.935-942
Main Author: 赵建虎 王晓 张红梅 胡俊 简晓敏
Format: Article
Language:Chinese
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:针对现有的侧扫声呐图像分割方法存在分割准确率不高和效率偏低的问题,提出了一种基于中性集合和量子粒子群算法的侧扫声呐图像阈值分割方法。通过基于中性集合计算图像灰度共生矩阵,实现了侧扫声呐图像精细纹理的表达,提高了分割精度;基于二维最大熵理论,采用量子粒子群算法计算二维最优分割阈值向量,实现了分割阈值向量的快速准确获取,提高了分割效率和精度。最终实现了高噪声侧扫声呐图像目标的准确、高效分割。通过对含有不同目标的侧扫声呐图像的分割试验,验证了该算法的有效性。
ISSN:1001-1595
DOI:10.11947/j.AGCS.2016.20150555