Loading…

Mechanistic insights into the selective hydrogenation of resorcinol to 1,3-cyclohexanedione over Pd/rGO catalyst through DFT calculation

In our previous work, graphene-supported Pd catalyst (Pd/rGO) exhibited higher activity and selectivity for the liquid phase selective hydrogenation of resorcinol to 1,3-cyclohexanedione compared with other catalysts. In the present study, further experimental and theoretical investigations were con...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemical engineering 2018-12, Vol.26 (12), p.2542-2548
Main Authors: Wei, Zuojun, Liu, Haiyan, Chen, Yidong, Guo, Dechao, Pan, Ruofei, Liu, Yingxin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In our previous work, graphene-supported Pd catalyst (Pd/rGO) exhibited higher activity and selectivity for the liquid phase selective hydrogenation of resorcinol to 1,3-cyclohexanedione compared with other catalysts. In the present study, further experimental and theoretical investigations were conducted to reveal the reaction mechanism and the catalytic mechanism of Pd/rGO for resorcinol hydrogenation. The effects of graphene nanosheet and the solvent on the reaction were investigated, and the pathway for resorcinol hydrogenation was proposed supported by density functional theory (DFT) calculations. The results showed that the excellent selectivity of Pd/rGO to 1,3-cyclohexanedione was attributed to the strong π–π and p–π interactions between the graphene nanosheet and the benzene ring as well as hydroxyl in resorcinol molecule, which was in agreement with our previous speculation. In weak polar aprotic solvents, solvation free energy had less impact to the π–π and p–π interactions mentioned above. In strong polar aprotic solvents and polar protic solvents, however, the influence of solvation free energy was much greater, which led to the decrease in the conversion of resorcinol and the selectivity to 1,3-cyclohexanedione. [Display omitted]
ISSN:1004-9541
2210-321X
DOI:10.1016/j.cjche.2018.01.031