Loading…

Parametric optimization of packed bed for activated coal fly ash waste heat recovery using CFD techniques

Coal fly ash is an industrial solid waste generated from coal preparation during the processing and cleaning of coal for electric power generation. Comprehensive investigation on the reutilization of waste heat of activated coal fly ash is of great economic significance. The method of recovering the...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemical engineering 2020-02, Vol.28 (2), p.518-525
Main Authors: Liang, Kai, Jin, Saimeng, Chen, Hengzhi, Ren, Jingzheng, Shen, Weifeng, Wei, Shun'an
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coal fly ash is an industrial solid waste generated from coal preparation during the processing and cleaning of coal for electric power generation. Comprehensive investigation on the reutilization of waste heat of activated coal fly ash is of great economic significance. The method of recovering the waste heat, proposed in this study, is the transfer of heat from activated coal fly ash to gas with the movement of air using the packed bed, providing valuable energy sources for preheating the raw coal fly ash to reduce the overall energy consumption. The investigation is carried on the heat transfer characteristics of gas–solid (activated coal fly ash) phases and air temperature fields of the packed bed under some key conditions via computational fluid dynamics. A two dimensional geometry is utilized to represent key parts of packed bed. The distribution mechanism of the temperature field for gas phase is analyzed based on the transient temperature contours at different times. The results show that the obtained rule of gas–solid heat transfer can effectively evaluate the influences of operating parameters on the air temperature in the packed bed. Simultaneously, it is found that no temperature differences exist in the hot air at the outlet of the packed bed. The investigation provides guidance for the design and optimization of other similar energy recovery apparatuses in industries.
ISSN:1004-9541
2210-321X
DOI:10.1016/j.cjche.2019.06.004