Loading…
An analysis approach of mass and energy balance in a dual-reactor circulating fluidized bed system
[Display omitted] An analysis approach considering gas-solids hydrodynamics, reaction kinetics and reacting species non-uniformity together in a dual-reactor system is presented for better understanding its mass and energy balance. It was achieved by a 3-dimensional comprehensive hydrodynamics and r...
Saved in:
Published in: | Chinese journal of chemical engineering 2021-12, Vol.40 (12), p.18-26 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
An analysis approach considering gas-solids hydrodynamics, reaction kinetics and reacting species non-uniformity together in a dual-reactor system is presented for better understanding its mass and energy balance. It was achieved by a 3-dimensional comprehensive hydrodynamics and reaction model for the dual-reactor system, which was developed from the successfully verified 3-dimensional comprehensive combustion model for one circulating fluidized bed (CFB) system (Xu and Cheng, 2019). The developed model and analysis approach was successfully used on a 1 MW circulating fluidized bed – bubbling fluidized bed (CFB-BFB) dual-reactor system. Results showed the sensible and chemical energy between two reactors as well as the energy distributions in each reactor were balanced and they agreed well with the experimental measurements. The analysis approach indicated energy balance had a close relationship with the mass transfer in the CFB-BFB dual-reactor system. It may be applied in a design and operation optimization for a dual-reactor system. |
---|---|
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/j.cjche.2020.10.043 |