Loading…
Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: A review
There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world. In most cases, the extraction of copper from such raw materials is achieved by applying the leaching procedures. However, its low extr...
Saved in:
Published in: | Chinese journal of chemical engineering 2022-01, Vol.41 (1), p.109-120 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There has been a strong interest in technologies suited for mining and processing of low-grade ores because of the rapid depletion of mineral resources in the world. In most cases, the extraction of copper from such raw materials is achieved by applying the leaching procedures. However, its low extraction efficiency and the long extraction period limit its large-scale commercial applications in copper recovery, even though bioleaching has been widely employed commercially for heap and dump bioleaching of secondary copper sulfide ores. Overcoming the technical challenges requires a better understanding of leaching kinetics and on-site microbial activities. Herein, this paper reviews the current status of main commercial biomining operations around the world, identifies factors that affect chalcocite dissolution both in chemical leaching and bioleaching, summarizes the related kinetic research, and concludes with a discussion of two on-site chalcocite heap leaching practices. Further, the challenges and innovations for the future development of chalcocite hydrometallurgy are presented in the end. |
---|---|
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/j.cjche.2021.12.014 |