Loading…
Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study
[Display omitted] In this study, an approach was proposed to employ new target branched compounds (TBCs) including multiple antibiotic norfloxacin frameworks for intensified adsorption films to achieve super protection of mild steel in HCl medium. Thus, the TBCs containing bis/tri norfloxacin skelet...
Saved in:
Published in: | Chinese journal of chemical engineering 2023-08, Vol.60 (8), p.212-227 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
In this study, an approach was proposed to employ new target branched compounds (TBCs) including multiple antibiotic norfloxacin frameworks for intensified adsorption films to achieve super protection of mild steel in HCl medium. Thus, the TBCs containing bis/tri norfloxacin skeletons were synthesized by multi-step preparation route. In addition, the reference linear compound (RLC) including a single norfloxacin part was also synthesized. The chemical structures of these compounds were confirmed by various means. It was demonstrated that the TBCs could form the tough adsorption films on the surface of mild steel, which could be processed mainly through chemisorption effect. The electrochemical analysis suggested that the TBCs displayed superior corrosion inhibition performance for low carbon steel in 1.0 mol·L−1 HCl solution over the RLC (RLC, 87.80%; TBC1, 97.63%; TBC2, 98.35%), which was further understood by the molecular modelling. The isotherm adsorption plots were employed to analyze the spontaneous adsorption process of the TBCs on low carbon steel surface, and a prominent chemisorption could be inferred by the standard Gibbs free energy changes of the adsorption. |
---|---|
ISSN: | 1004-9541 2210-321X |
DOI: | 10.1016/j.cjche.2023.01.015 |