Loading…

可用于高效光催化制氢的Ni-P团簇改性氮化碳材料

在过去的几十年里, 化石能源的过度消耗导致了全球能源短缺和环境污染, 这严重制约着人类社会发展. 因此, 寻找一种清洁的可再生的能源成为了人们亟待解决的问题. 太阳能是地球上最丰富的能源, 通过半导体光催化技术把太阳能转化为清洁的氢能是解决能源危机和缓解环境污染最有效的方法之一. 石墨相氮化碳(CN)具有合适的能带结构、良好的稳定性、无毒性, 且合成方法简单、成本低廉, 因而被视为是一种非常有潜力的半导体光催化剂. 然而, 由于CN在光催化反应过程中光生电子与空穴极易发生复合, 严重影响了电子从体相到外表面的转移过程以及随后的光催化质子还原反应, 使得CN光催化制氢效率不高. 通过负载助催化剂...

Full description

Saved in:
Bibliographic Details
Published in:催化学报 2019, Vol.40 (6), p.874-881
Main Authors: 王雅婕, 李瑶, 曹少文, 余家国
Format: Article
Language:Chinese
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:在过去的几十年里, 化石能源的过度消耗导致了全球能源短缺和环境污染, 这严重制约着人类社会发展. 因此, 寻找一种清洁的可再生的能源成为了人们亟待解决的问题. 太阳能是地球上最丰富的能源, 通过半导体光催化技术把太阳能转化为清洁的氢能是解决能源危机和缓解环境污染最有效的方法之一. 石墨相氮化碳(CN)具有合适的能带结构、良好的稳定性、无毒性, 且合成方法简单、成本低廉, 因而被视为是一种非常有潜力的半导体光催化剂. 然而, 由于CN在光催化反应过程中光生电子与空穴极易发生复合, 严重影响了电子从体相到外表面的转移过程以及随后的光催化质子还原反应, 使得CN光催化制氢效率不高. 通过负载助催化剂可以有效地促进光生电子和空穴的分离. 但是现有的高效助催化剂一般为 贵金属, 如Pt, Pd和Au等, 成本较高, 不利于实际应用. 因此, 寻找高效、稳定且廉价的助催化剂成为光催化领域的挑战之一.本文通过化学镀的方法将Ni-P合金团簇锚定在CN表面, 并通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、紫外-可见漫反射光谱(UV-vis DRS)、X射线光电子能谱(XPS)、稳态荧光光谱(PL)、时间分辨荧光光谱(TRPL)、光电化学测试和光催化制氢测试等方法研究了负载Ni-P助催化剂对CN晶体结构、化学组成、微观形貌、吸光能力、电荷转移以及光催化性能的影响. XRD, FTIR, FESEM和TEM的结果显示, Ni-P均匀紧密地与CN结合在一起. UV-vis DRS测试表明, 负载Ni-P提高了材料体系的光吸收能力. XPS结果表明, 在复合光催化剂中电子从CN转移到了Ni-P助催化剂上, 表明光催化剂和助催化剂之间强的界面相互作用. PL, TRPL和光电化学测试结果表明, 与普通CN相比, 负载了Ni-P的CN有更小的荧光强度、更短的荧光寿命和更小的电荷转移电阻. 这说明负载Ni-P助催化剂提高了CN的电荷转移效率, 抑制了光生电子和空穴的复合. 因此在光催化制氢反应中, 复合光催化剂的氢气产率可高达1506 μmol h?1 g?1, 可以与负载贵金属Pt助催化剂的CN相媲美, 并且在9 h的循环试验中, 产氢性能没有明显下降. 综上所述, Ni-P合金团簇在光催化质子还原反应中有望作为贵金属助催化剂的高效、稳定且廉价的替代品.
ISSN:0253-9837