Loading…

ENSO hindcast skill of the IAP-DecPreS near-term climate prediction system:comparison of full-field and anomaly initialization

本文使用中国科学院大气物理研究所近期气候预测系统IAP-DecPreS,评估了全场初始化和异常场初始化对ENSO的预测技巧.结果表明:采用异常场初始化方法对典型ENSO和El Ni(n)oModoki的预报技巧均优于采用全场初始化方法的预报技巧.采用异常场初始化方法的回报结果能超前10个月回报强ENSO事件,超前4-7个月回报相对较弱的ENSO事件.采用异常场初始化方法对El Ni(n)o Modoki和典型ENSO的预报技巧相当.此外,采用异常场初始化方法的回报结果能超前1-4个月模拟出典型ENSO和El Ni(n)o Modoki的冬季海表面温度、降水以及大气环流异常的主要空间分布特征....

Full description

Saved in:
Bibliographic Details
Published in:大气和海洋科学快报(英文版) 2018, Vol.11 (1), p.54-62
Main Authors: SUN Qian, WU Bo, ZHOU Tian-Jun, YAN Zi-Xiang
Format: Article
Language:Chinese
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 62
container_issue 1
container_start_page 54
container_title 大气和海洋科学快报(英文版)
container_volume 11
creator SUN Qian
WU Bo
ZHOU Tian-Jun
YAN Zi-Xiang
description 本文使用中国科学院大气物理研究所近期气候预测系统IAP-DecPreS,评估了全场初始化和异常场初始化对ENSO的预测技巧.结果表明:采用异常场初始化方法对典型ENSO和El Ni(n)oModoki的预报技巧均优于采用全场初始化方法的预报技巧.采用异常场初始化方法的回报结果能超前10个月回报强ENSO事件,超前4-7个月回报相对较弱的ENSO事件.采用异常场初始化方法对El Ni(n)o Modoki和典型ENSO的预报技巧相当.此外,采用异常场初始化方法的回报结果能超前1-4个月模拟出典型ENSO和El Ni(n)o Modoki的冬季海表面温度、降水以及大气环流异常的主要空间分布特征.
format article
fullrecord <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_dqhhykxkb201801007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqhhykxkb201801007</wanfj_id><sourcerecordid>dqhhykxkb201801007</sourcerecordid><originalsourceid>FETCH-wanfang_journals_dqhhykxkb2018010073</originalsourceid><addsrcrecordid>eNqVjM1KAzEUhbNQaNG-w10LgUyn9sedaEU3Wqj7cpu5ca5zk9QkRceFz-4UfAEXhwPf-TlT42q-mOnpsp6N1CRn3pvrqh7QajVWP-vn7Qu0HBqLuUDuWASig9ISPN1u9D3ZTaItBMKkCyUPVthjITgkatgWjgFynwv5Gxv9ARPngQwP7iiiHZM0gOGk6FF64MCFUfgbT9NLde5QMk3-_EJdPaxf7x71JwaH4W33Ho8pDMmu-Wjbvvvq9lNTLU1lzKL-V_kXDixV-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ENSO hindcast skill of the IAP-DecPreS near-term climate prediction system:comparison of full-field and anomaly initialization</title><source>Publicly Available Content Database</source><source>Taylor &amp; Francis Open Access Journals</source><creator>SUN Qian ; WU Bo ; ZHOU Tian-Jun ; YAN Zi-Xiang</creator><creatorcontrib>SUN Qian ; WU Bo ; ZHOU Tian-Jun ; YAN Zi-Xiang</creatorcontrib><description>本文使用中国科学院大气物理研究所近期气候预测系统IAP-DecPreS,评估了全场初始化和异常场初始化对ENSO的预测技巧.结果表明:采用异常场初始化方法对典型ENSO和El Ni(n)oModoki的预报技巧均优于采用全场初始化方法的预报技巧.采用异常场初始化方法的回报结果能超前10个月回报强ENSO事件,超前4-7个月回报相对较弱的ENSO事件.采用异常场初始化方法对El Ni(n)o Modoki和典型ENSO的预报技巧相当.此外,采用异常场初始化方法的回报结果能超前1-4个月模拟出典型ENSO和El Ni(n)o Modoki的冬季海表面温度、降水以及大气环流异常的主要空间分布特征.</description><identifier>ISSN: 1674-2834</identifier><language>chi</language><ispartof>大气和海洋科学快报(英文版), 2018, Vol.11 (1), p.54-62</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqhhykxkb/dqhhykxkb.jpg</thumbnail><link.rule.ids>314,776,780,4010</link.rule.ids></links><search><creatorcontrib>SUN Qian</creatorcontrib><creatorcontrib>WU Bo</creatorcontrib><creatorcontrib>ZHOU Tian-Jun</creatorcontrib><creatorcontrib>YAN Zi-Xiang</creatorcontrib><title>ENSO hindcast skill of the IAP-DecPreS near-term climate prediction system:comparison of full-field and anomaly initialization</title><title>大气和海洋科学快报(英文版)</title><description>本文使用中国科学院大气物理研究所近期气候预测系统IAP-DecPreS,评估了全场初始化和异常场初始化对ENSO的预测技巧.结果表明:采用异常场初始化方法对典型ENSO和El Ni(n)oModoki的预报技巧均优于采用全场初始化方法的预报技巧.采用异常场初始化方法的回报结果能超前10个月回报强ENSO事件,超前4-7个月回报相对较弱的ENSO事件.采用异常场初始化方法对El Ni(n)o Modoki和典型ENSO的预报技巧相当.此外,采用异常场初始化方法的回报结果能超前1-4个月模拟出典型ENSO和El Ni(n)o Modoki的冬季海表面温度、降水以及大气环流异常的主要空间分布特征.</description><issn>1674-2834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVjM1KAzEUhbNQaNG-w10LgUyn9sedaEU3Wqj7cpu5ca5zk9QkRceFz-4UfAEXhwPf-TlT42q-mOnpsp6N1CRn3pvrqh7QajVWP-vn7Qu0HBqLuUDuWASig9ISPN1u9D3ZTaItBMKkCyUPVthjITgkatgWjgFynwv5Gxv9ARPngQwP7iiiHZM0gOGk6FF64MCFUfgbT9NLde5QMk3-_EJdPaxf7x71JwaH4W33Ho8pDMmu-Wjbvvvq9lNTLU1lzKL-V_kXDixV-w</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>SUN Qian</creator><creator>WU Bo</creator><creator>ZHOU Tian-Jun</creator><creator>YAN Zi-Xiang</creator><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2018</creationdate><title>ENSO hindcast skill of the IAP-DecPreS near-term climate prediction system:comparison of full-field and anomaly initialization</title><author>SUN Qian ; WU Bo ; ZHOU Tian-Jun ; YAN Zi-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_dqhhykxkb2018010073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SUN Qian</creatorcontrib><creatorcontrib>WU Bo</creatorcontrib><creatorcontrib>ZHOU Tian-Jun</creatorcontrib><creatorcontrib>YAN Zi-Xiang</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>大气和海洋科学快报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SUN Qian</au><au>WU Bo</au><au>ZHOU Tian-Jun</au><au>YAN Zi-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ENSO hindcast skill of the IAP-DecPreS near-term climate prediction system:comparison of full-field and anomaly initialization</atitle><jtitle>大气和海洋科学快报(英文版)</jtitle><date>2018</date><risdate>2018</risdate><volume>11</volume><issue>1</issue><spage>54</spage><epage>62</epage><pages>54-62</pages><issn>1674-2834</issn><abstract>本文使用中国科学院大气物理研究所近期气候预测系统IAP-DecPreS,评估了全场初始化和异常场初始化对ENSO的预测技巧.结果表明:采用异常场初始化方法对典型ENSO和El Ni(n)oModoki的预报技巧均优于采用全场初始化方法的预报技巧.采用异常场初始化方法的回报结果能超前10个月回报强ENSO事件,超前4-7个月回报相对较弱的ENSO事件.采用异常场初始化方法对El Ni(n)o Modoki和典型ENSO的预报技巧相当.此外,采用异常场初始化方法的回报结果能超前1-4个月模拟出典型ENSO和El Ni(n)o Modoki的冬季海表面温度、降水以及大气环流异常的主要空间分布特征.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 1674-2834
ispartof 大气和海洋科学快报(英文版), 2018, Vol.11 (1), p.54-62
issn 1674-2834
language chi
recordid cdi_wanfang_journals_dqhhykxkb201801007
source Publicly Available Content Database; Taylor & Francis Open Access Journals
title ENSO hindcast skill of the IAP-DecPreS near-term climate prediction system:comparison of full-field and anomaly initialization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ENSO%20hindcast%20skill%20of%20the%20IAP-DecPreS%20near-term%20climate%20prediction%20system:comparison%20of%20full-field%20and%20anomaly%20initialization&rft.jtitle=%E5%A4%A7%E6%B0%94%E5%92%8C%E6%B5%B7%E6%B4%8B%E7%A7%91%E5%AD%A6%E5%BF%AB%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=SUN%20Qian&rft.date=2018&rft.volume=11&rft.issue=1&rft.spage=54&rft.epage=62&rft.pages=54-62&rft.issn=1674-2834&rft_id=info:doi/&rft_dat=%3Cwanfang_jour%3Edqhhykxkb201801007%3C/wanfang_jour%3E%3Cgrp_id%3Ecdi_FETCH-wanfang_journals_dqhhykxkb2018010073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=dqhhykxkb201801007&rfr_iscdi=true