Loading…

The Performance of Atmospheric Component Model R42L9 of GOALS/LASG

This paper examines the performance of an atmospheric general circulation model (AGCM) de-veloped at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysi-cal Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). It is a spectral model truncated at R42(2.8125°lo...

Full description

Saved in:
Bibliographic Details
Published in:Advances in atmospheric sciences 2003-09, Vol.20 (5), p.726-742
Main Author: 吴统文 刘平 王在志 刘屹岷 宇如聪 吴国雄
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper examines the performance of an atmospheric general circulation model (AGCM) de-veloped at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysi-cal Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). It is a spectral model truncated at R42(2.8125°long×1.66°lat) resolution and with nine vertical levels, and referred to as R42L9/LASG here-after. It is also the new version of atmospheric component model R15L9 of the global ocean-atmosphere-land system (GOALS/LASG). A 40-year simulation in which the model is forced with the climatological monthly mean sea surface temperature is compared with the 40-year (1958-97) U.S. National Center for Environmental Prediction (NCEP) global reanalysis and the 22-year (1979-2000) Xie-Arkin monthly precipitation climatology. The mean DJF and JJA geographical distributions of precipitation, sea level pressure, 500-hPa geopotential height, 850-hPa and 200-hPa zonal wind, and other fields averaged for the last 30-year integration of the R42L9 model are analyzed. Results show that the model reproduces well the observed basic patterns, particularly precipitation over the East Asian region. Comparing the new model with R15L9/LASG, the old version with coarse resolution (nearly 7.5°long×4.5°lat), shows an obvious improvement in the simulation of regional climate, especially precipitation. The weaknesses in simulation and future improvements of the model are also discussed.
ISSN:0256-1530
1861-9533
DOI:10.1007/bf02915398