Loading…

Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique

The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demo...

Full description

Saved in:
Bibliographic Details
Published in:Advances in atmospheric sciences 2014-11, Vol.31 (6), p.1386-1394
Main Authors: Yang, Lu, Wang, Zhenhui, Chu, Yanli, Zhao, Hang, Tang, Min
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-f147c7551a55a2e6adc81fc5e6bc29d1932c98e0288d7683a5aeb08c4b5cb2ba3
cites cdi_FETCH-LOGICAL-c410t-f147c7551a55a2e6adc81fc5e6bc29d1932c98e0288d7683a5aeb08c4b5cb2ba3
container_end_page 1394
container_issue 6
container_start_page 1386
container_title Advances in atmospheric sciences
container_volume 31
creator Yang, Lu
Wang, Zhenhui
Chu, Yanli
Zhao, Hang
Tang, Min
description The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demonstrated in this paper.This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions.The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model.The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions:tropical,midlatitude summer,U.S.standard,and midlatitude winter.The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB "wind".This technique is valid over cloudfree ocean areas.The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD),speed bias (BIAS),mean vector difference (MVD),standard deviation (SD),and root-mean-square error (RMSE),when compared with the wind field of NCEP reanalysis data and rawinsonde observations.
doi_str_mv 10.1007/s00376-014-3165-9
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e201406013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>662244598</cqvip_id><wanfj_id>dqkxjz_e201406013</wanfj_id><sourcerecordid>dqkxjz_e201406013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-f147c7551a55a2e6adc81fc5e6bc29d1932c98e0288d7683a5aeb08c4b5cb2ba3</originalsourceid><addsrcrecordid>eNp9kc2O0zAUhSMEEmXgAdhZsIGFwT-xkyxR6TCVipCgMGJlOc51mpLYrZ3SGV6BN-BZeCdeAZeMRogFK0tX3znnXp8se0zJC0pI8TISwguJCc0xp1Lg6k42o6WkuBKc381mhAmJqeDkfvYgxm2iK17SWfb9Uo8Q0Ce98wG99WPnHfrQtU73aHE1Bm3-TGzwAzr_jNkCrbxrj_oroKWzQQdo0GXnGn9Ey0G3EJFNPvPeHxpsAwB6D20yiL9-_kDrDaA1DCkomb_urIUAzpxmZuO6_QEeZves7iM8unnPso_ni_X8Aq_evVnOX62wySkZsaV5YQohqBZCM5C6MSW1RoCsDasaWnFmqhIIK8umkCXXQkNNSpPXwtSs1vwsez75HrWz2rVq6w8hXRxVs_9ytf2mgKV_JJJQnthnE7sLPq0YRzV00UDfawf-EBUVUpZ5TguR0Kf_oLe-iaKE5ZyzRNGJMsHHGMCqXegGHa4VJepUpZqqVGkFdapSVUnDJk1MrGsh_OX8H9GTm6BNqmyfdLdJUjKW56Iq-W8YFK3C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561024332</pqid></control><display><type>article</type><title>Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique</title><source>Springer Nature</source><creator>Yang, Lu ; Wang, Zhenhui ; Chu, Yanli ; Zhao, Hang ; Tang, Min</creator><creatorcontrib>Yang, Lu ; Wang, Zhenhui ; Chu, Yanli ; Zhao, Hang ; Tang, Min</creatorcontrib><description>The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demonstrated in this paper.This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions.The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model.The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions:tropical,midlatitude summer,U.S.standard,and midlatitude winter.The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB "wind".This technique is valid over cloudfree ocean areas.The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD),speed bias (BIAS),mean vector difference (MVD),standard deviation (SD),and root-mean-square error (RMSE),when compared with the wind field of NCEP reanalysis data and rawinsonde observations.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-014-3165-9</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Atmospheric Sciences ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Latitude ; Meteorology ; NCEP再分析资料 ; Radiative transfer ; Water vapor ; Wind ; 中纬度地区 ; 信号提取 ; 图片 ; 技术 ; 时间 ; 红外窗口 ; 运动矢量</subject><ispartof>Advances in atmospheric sciences, 2014-11, Vol.31 (6), p.1386-1394</ispartof><rights>Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-f147c7551a55a2e6adc81fc5e6bc29d1932c98e0288d7683a5aeb08c4b5cb2ba3</citedby><cites>FETCH-LOGICAL-c410t-f147c7551a55a2e6adc81fc5e6bc29d1932c98e0288d7683a5aeb08c4b5cb2ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84334X/84334X.jpg</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Wang, Zhenhui</creatorcontrib><creatorcontrib>Chu, Yanli</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><title>Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><addtitle>Advances in Atmospheric Sciences</addtitle><description>The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demonstrated in this paper.This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions.The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model.The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions:tropical,midlatitude summer,U.S.standard,and midlatitude winter.The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB "wind".This technique is valid over cloudfree ocean areas.The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD),speed bias (BIAS),mean vector difference (MVD),standard deviation (SD),and root-mean-square error (RMSE),when compared with the wind field of NCEP reanalysis data and rawinsonde observations.</description><subject>Atmospheric Sciences</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Latitude</subject><subject>Meteorology</subject><subject>NCEP再分析资料</subject><subject>Radiative transfer</subject><subject>Water vapor</subject><subject>Wind</subject><subject>中纬度地区</subject><subject>信号提取</subject><subject>图片</subject><subject>技术</subject><subject>时间</subject><subject>红外窗口</subject><subject>运动矢量</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kc2O0zAUhSMEEmXgAdhZsIGFwT-xkyxR6TCVipCgMGJlOc51mpLYrZ3SGV6BN-BZeCdeAZeMRogFK0tX3znnXp8se0zJC0pI8TISwguJCc0xp1Lg6k42o6WkuBKc381mhAmJqeDkfvYgxm2iK17SWfb9Uo8Q0Ce98wG99WPnHfrQtU73aHE1Bm3-TGzwAzr_jNkCrbxrj_oroKWzQQdo0GXnGn9Ey0G3EJFNPvPeHxpsAwB6D20yiL9-_kDrDaA1DCkomb_urIUAzpxmZuO6_QEeZves7iM8unnPso_ni_X8Aq_evVnOX62wySkZsaV5YQohqBZCM5C6MSW1RoCsDasaWnFmqhIIK8umkCXXQkNNSpPXwtSs1vwsez75HrWz2rVq6w8hXRxVs_9ytf2mgKV_JJJQnthnE7sLPq0YRzV00UDfawf-EBUVUpZ5TguR0Kf_oLe-iaKE5ZyzRNGJMsHHGMCqXegGHa4VJepUpZqqVGkFdapSVUnDJk1MrGsh_OX8H9GTm6BNqmyfdLdJUjKW56Iq-W8YFK3C</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Yang, Lu</creator><creator>Wang, Zhenhui</creator><creator>Chu, Yanli</creator><creator>Zhao, Hang</creator><creator>Tang, Min</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Beijing Meteorological Office(Da Xing),Beijing,102600%Collaborative Innovation Center on the Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science &amp; Technology, Nanjing 210044</general><general>School of Atmospheric Physics, Nanjing University of Information Science &amp; Technology, Nanjing 210044%Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7UA</scope><scope>C1K</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20141101</creationdate><title>Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique</title><author>Yang, Lu ; Wang, Zhenhui ; Chu, Yanli ; Zhao, Hang ; Tang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-f147c7551a55a2e6adc81fc5e6bc29d1932c98e0288d7683a5aeb08c4b5cb2ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atmospheric Sciences</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Latitude</topic><topic>Meteorology</topic><topic>NCEP再分析资料</topic><topic>Radiative transfer</topic><topic>Water vapor</topic><topic>Wind</topic><topic>中纬度地区</topic><topic>信号提取</topic><topic>图片</topic><topic>技术</topic><topic>时间</topic><topic>红外窗口</topic><topic>运动矢量</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Wang, Zhenhui</creatorcontrib><creatorcontrib>Chu, Yanli</creatorcontrib><creatorcontrib>Zhao, Hang</creatorcontrib><creatorcontrib>Tang, Min</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lu</au><au>Wang, Zhenhui</au><au>Chu, Yanli</au><au>Zhao, Hang</au><au>Tang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><addtitle>Advances in Atmospheric Sciences</addtitle><date>2014-11-01</date><risdate>2014</risdate><volume>31</volume><issue>6</issue><spage>1386</spage><epage>1394</epage><pages>1386-1394</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery,where the traditional cloud motion wind technique fails.A new tracer selection procedure,which we call the temporal difference technique,is demonstrated in this paper.This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature (TB) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions.The TB difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model.The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions:tropical,midlatitude summer,U.S.standard,and midlatitude winter.The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the TB "wind".This technique is valid over cloudfree ocean areas.The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD),speed bias (BIAS),mean vector difference (MVD),standard deviation (SD),and root-mean-square error (RMSE),when compared with the wind field of NCEP reanalysis data and rawinsonde observations.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-014-3165-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-1530
ispartof Advances in atmospheric sciences, 2014-11, Vol.31 (6), p.1386-1394
issn 0256-1530
1861-9533
language eng
recordid cdi_wanfang_journals_dqkxjz_e201406013
source Springer Nature
subjects Atmospheric Sciences
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Latitude
Meteorology
NCEP再分析资料
Radiative transfer
Water vapor
Wind
中纬度地区
信号提取
图片
技术
时间
红外窗口
运动矢量
title Water Vapor Motion Signal Extraction from FY-2E Longwave Infrared Window Images for Cloud-free Regions: The Temporal Difference Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A31%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Vapor%20Motion%20Signal%20Extraction%20from%20FY-2E%20Longwave%20Infrared%20Window%20Images%20for%20Cloud-free%20Regions%EF%BC%9A%20The%20Temporal%20Difference%20Technique&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Yang,%20Lu&rft.date=2014-11-01&rft.volume=31&rft.issue=6&rft.spage=1386&rft.epage=1394&rft.pages=1386-1394&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-014-3165-9&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e201406013%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-f147c7551a55a2e6adc81fc5e6bc29d1932c98e0288d7683a5aeb08c4b5cb2ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1561024332&rft_id=info:pmid/&rft_cqvip_id=662244598&rft_wanfj_id=dqkxjz_e201406013&rfr_iscdi=true