Loading…
Background Error Covariance Statistics of Hydrometeor Control Variables Based on Gaussian Transform
Use of data assimilation to initialize hydrometeors plays a vital role in numerical weather prediction (NWP). To directly analyze hydrometeors in data assimilation systems from cloud-sensitive observations, hydrometeor control variables are necessary. Common data assimilation systems theoretically r...
Saved in:
Published in: | Advances in atmospheric sciences 2021-05, Vol.38 (5), p.831-844 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-d9bbbcee448c00440267e3c22f763c540087cf3cce144f17c213de50992c94593 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-d9bbbcee448c00440267e3c22f763c540087cf3cce144f17c213de50992c94593 |
container_end_page | 844 |
container_issue | 5 |
container_start_page | 831 |
container_title | Advances in atmospheric sciences |
container_volume | 38 |
creator | Sun, Tao Chen, Yaodeng Meng, Deming Chen, Haiqin |
description | Use of data assimilation to initialize hydrometeors plays a vital role in numerical weather prediction (NWP). To directly analyze hydrometeors in data assimilation systems from cloud-sensitive observations, hydrometeor control variables are necessary. Common data assimilation systems theoretically require that the probability density functions (PDFs) of analysis, background, and observation errors should satisfy the Gaussian unbiased assumptions. In this study, a Gaussian transform method is proposed to transform hydrometeors to more Gaussian variables, which is modified from the Softmax function and renamed as Quasi-Softmax transform. The Quasi-Softmax transform method then is compared to the original hydrometeor mixing ratios and their logarithmic transform and Softmax transform. The spatial distribution, the non-Gaussian nature of the background errors, and the characteristics of the background errors of hydrometeors in each method are studied. Compared to the logarithmic and Softmax transform, the Quasi-Softmax method keeps the vertical distribution of the original hydrometeor mixing ratios to the greatest extent. The results of the D’Agostino test show that the hydrometeors transformed by the Quasi-Softmax method are more Gaussian when compared to the other methods. The Gaussian transform has been added to the control variable transform to estimate the background error covariances. Results show that the characteristics of the hydrometeor background errors are reasonable for the Quasi-Softmax method. The transformed hydrometeors using the Quasi-Softmax transform meet the Gaussian unbiased assumptions of the data assimilation system, and are promising control variables for data assimilation systems. |
doi_str_mv | 10.1007/s00376-021-0271-3 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dqkxjz_e202105010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dqkxjz_e202105010</wanfj_id><sourcerecordid>dqkxjz_e202105010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d9bbbcee448c00440267e3c22f763c540087cf3cce144f17c213de50992c94593</originalsourceid><addsrcrecordid>eNp10L1OwzAUBWALgUQpPACbJSaGwL12nDQjrUqLhMRAYbVcx6nSH7u1E6A8PS5B6sRg3eU7x9Ih5BrhDgHy-wDA8ywBhvHlmPAT0sNBhkkhOD8lPWAiS1BwOCcXISyjLvgAe0QPlV4tvGttScfeO09H7kP5Wllt6Gujmjo0tQ7UVXS6L73bmMb8Itt4t6bvBzpfm0CHKpiSOksnqg0h5unMKxsq5zeX5KxS62Cu_m6fvD2OZ6Np8vwyeRo9PCeaC2iSspjP59qYNB1ogDQFluWGa8aqPONapACDXFdca4NpWmGuGfLSCCgKpotUFLxPbrveT2UrZRdy6Vpv44-y3K2-lt_SsLgPCECI9qazW-92rQnNETOBwIqcI0aFndLeheBNJbe-3ii_lwjysLvsdpexVx52lzxmWJcJ0dqF8cfm_0M_TUKFHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510297311</pqid></control><display><type>article</type><title>Background Error Covariance Statistics of Hydrometeor Control Variables Based on Gaussian Transform</title><source>Springer Nature</source><creator>Sun, Tao ; Chen, Yaodeng ; Meng, Deming ; Chen, Haiqin</creator><creatorcontrib>Sun, Tao ; Chen, Yaodeng ; Meng, Deming ; Chen, Haiqin</creatorcontrib><description>Use of data assimilation to initialize hydrometeors plays a vital role in numerical weather prediction (NWP). To directly analyze hydrometeors in data assimilation systems from cloud-sensitive observations, hydrometeor control variables are necessary. Common data assimilation systems theoretically require that the probability density functions (PDFs) of analysis, background, and observation errors should satisfy the Gaussian unbiased assumptions. In this study, a Gaussian transform method is proposed to transform hydrometeors to more Gaussian variables, which is modified from the Softmax function and renamed as Quasi-Softmax transform. The Quasi-Softmax transform method then is compared to the original hydrometeor mixing ratios and their logarithmic transform and Softmax transform. The spatial distribution, the non-Gaussian nature of the background errors, and the characteristics of the background errors of hydrometeors in each method are studied. Compared to the logarithmic and Softmax transform, the Quasi-Softmax method keeps the vertical distribution of the original hydrometeor mixing ratios to the greatest extent. The results of the D’Agostino test show that the hydrometeors transformed by the Quasi-Softmax method are more Gaussian when compared to the other methods. The Gaussian transform has been added to the control variable transform to estimate the background error covariances. Results show that the characteristics of the hydrometeor background errors are reasonable for the Quasi-Softmax method. The transformed hydrometeors using the Quasi-Softmax transform meet the Gaussian unbiased assumptions of the data assimilation system, and are promising control variables for data assimilation systems.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-021-0271-3</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Atmospheric Sciences ; Control ; Control systems ; Covariance ; Data ; Data assimilation ; Data collection ; Distribution ; Earth and Environmental Science ; Earth Sciences ; Errors ; Geophysics/Geodesy ; Hydrometeors ; Meteorology ; Mixing ratio ; Normal distribution ; Numerical weather forecasting ; Original Paper ; Probability density functions ; Probability theory ; Spatial distribution ; Statistical analysis ; Statistical methods ; Variables ; Vertical distribution ; Weather forecasting</subject><ispartof>Advances in atmospheric sciences, 2021-05, Vol.38 (5), p.831-844</ispartof><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d9bbbcee448c00440267e3c22f763c540087cf3cce144f17c213de50992c94593</citedby><cites>FETCH-LOGICAL-c350t-d9bbbcee448c00440267e3c22f763c540087cf3cce144f17c213de50992c94593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dqkxjz-e/dqkxjz-e.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Chen, Yaodeng</creatorcontrib><creatorcontrib>Meng, Deming</creatorcontrib><creatorcontrib>Chen, Haiqin</creatorcontrib><title>Background Error Covariance Statistics of Hydrometeor Control Variables Based on Gaussian Transform</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><description>Use of data assimilation to initialize hydrometeors plays a vital role in numerical weather prediction (NWP). To directly analyze hydrometeors in data assimilation systems from cloud-sensitive observations, hydrometeor control variables are necessary. Common data assimilation systems theoretically require that the probability density functions (PDFs) of analysis, background, and observation errors should satisfy the Gaussian unbiased assumptions. In this study, a Gaussian transform method is proposed to transform hydrometeors to more Gaussian variables, which is modified from the Softmax function and renamed as Quasi-Softmax transform. The Quasi-Softmax transform method then is compared to the original hydrometeor mixing ratios and their logarithmic transform and Softmax transform. The spatial distribution, the non-Gaussian nature of the background errors, and the characteristics of the background errors of hydrometeors in each method are studied. Compared to the logarithmic and Softmax transform, the Quasi-Softmax method keeps the vertical distribution of the original hydrometeor mixing ratios to the greatest extent. The results of the D’Agostino test show that the hydrometeors transformed by the Quasi-Softmax method are more Gaussian when compared to the other methods. The Gaussian transform has been added to the control variable transform to estimate the background error covariances. Results show that the characteristics of the hydrometeor background errors are reasonable for the Quasi-Softmax method. The transformed hydrometeors using the Quasi-Softmax transform meet the Gaussian unbiased assumptions of the data assimilation system, and are promising control variables for data assimilation systems.</description><subject>Atmospheric Sciences</subject><subject>Control</subject><subject>Control systems</subject><subject>Covariance</subject><subject>Data</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Distribution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Errors</subject><subject>Geophysics/Geodesy</subject><subject>Hydrometeors</subject><subject>Meteorology</subject><subject>Mixing ratio</subject><subject>Normal distribution</subject><subject>Numerical weather forecasting</subject><subject>Original Paper</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Spatial distribution</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Variables</subject><subject>Vertical distribution</subject><subject>Weather forecasting</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBWALgUQpPACbJSaGwL12nDQjrUqLhMRAYbVcx6nSH7u1E6A8PS5B6sRg3eU7x9Ih5BrhDgHy-wDA8ywBhvHlmPAT0sNBhkkhOD8lPWAiS1BwOCcXISyjLvgAe0QPlV4tvGttScfeO09H7kP5Wllt6Gujmjo0tQ7UVXS6L73bmMb8Itt4t6bvBzpfm0CHKpiSOksnqg0h5unMKxsq5zeX5KxS62Cu_m6fvD2OZ6Np8vwyeRo9PCeaC2iSspjP59qYNB1ogDQFluWGa8aqPONapACDXFdca4NpWmGuGfLSCCgKpotUFLxPbrveT2UrZRdy6Vpv44-y3K2-lt_SsLgPCECI9qazW-92rQnNETOBwIqcI0aFndLeheBNJbe-3ii_lwjysLvsdpexVx52lzxmWJcJ0dqF8cfm_0M_TUKFHw</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Sun, Tao</creator><creator>Chen, Yaodeng</creator><creator>Meng, Deming</creator><creator>Chen, Haiqin</creator><general>Science Press</general><general>Springer Nature B.V</general><general>Key Laboratory of Meteorological Disaster of Ministry of Education (KLME) / Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20210501</creationdate><title>Background Error Covariance Statistics of Hydrometeor Control Variables Based on Gaussian Transform</title><author>Sun, Tao ; Chen, Yaodeng ; Meng, Deming ; Chen, Haiqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d9bbbcee448c00440267e3c22f763c540087cf3cce144f17c213de50992c94593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric Sciences</topic><topic>Control</topic><topic>Control systems</topic><topic>Covariance</topic><topic>Data</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Distribution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Errors</topic><topic>Geophysics/Geodesy</topic><topic>Hydrometeors</topic><topic>Meteorology</topic><topic>Mixing ratio</topic><topic>Normal distribution</topic><topic>Numerical weather forecasting</topic><topic>Original Paper</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Spatial distribution</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Variables</topic><topic>Vertical distribution</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tao</creatorcontrib><creatorcontrib>Chen, Yaodeng</creatorcontrib><creatorcontrib>Meng, Deming</creatorcontrib><creatorcontrib>Chen, Haiqin</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tao</au><au>Chen, Yaodeng</au><au>Meng, Deming</au><au>Chen, Haiqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background Error Covariance Statistics of Hydrometeor Control Variables Based on Gaussian Transform</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>38</volume><issue>5</issue><spage>831</spage><epage>844</epage><pages>831-844</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>Use of data assimilation to initialize hydrometeors plays a vital role in numerical weather prediction (NWP). To directly analyze hydrometeors in data assimilation systems from cloud-sensitive observations, hydrometeor control variables are necessary. Common data assimilation systems theoretically require that the probability density functions (PDFs) of analysis, background, and observation errors should satisfy the Gaussian unbiased assumptions. In this study, a Gaussian transform method is proposed to transform hydrometeors to more Gaussian variables, which is modified from the Softmax function and renamed as Quasi-Softmax transform. The Quasi-Softmax transform method then is compared to the original hydrometeor mixing ratios and their logarithmic transform and Softmax transform. The spatial distribution, the non-Gaussian nature of the background errors, and the characteristics of the background errors of hydrometeors in each method are studied. Compared to the logarithmic and Softmax transform, the Quasi-Softmax method keeps the vertical distribution of the original hydrometeor mixing ratios to the greatest extent. The results of the D’Agostino test show that the hydrometeors transformed by the Quasi-Softmax method are more Gaussian when compared to the other methods. The Gaussian transform has been added to the control variable transform to estimate the background error covariances. Results show that the characteristics of the hydrometeor background errors are reasonable for the Quasi-Softmax method. The transformed hydrometeors using the Quasi-Softmax transform meet the Gaussian unbiased assumptions of the data assimilation system, and are promising control variables for data assimilation systems.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s00376-021-0271-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2021-05, Vol.38 (5), p.831-844 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_wanfang_journals_dqkxjz_e202105010 |
source | Springer Nature |
subjects | Atmospheric Sciences Control Control systems Covariance Data Data assimilation Data collection Distribution Earth and Environmental Science Earth Sciences Errors Geophysics/Geodesy Hydrometeors Meteorology Mixing ratio Normal distribution Numerical weather forecasting Original Paper Probability density functions Probability theory Spatial distribution Statistical analysis Statistical methods Variables Vertical distribution Weather forecasting |
title | Background Error Covariance Statistics of Hydrometeor Control Variables Based on Gaussian Transform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background%20Error%20Covariance%20Statistics%20of%20Hydrometeor%20Control%20Variables%20Based%20on%20Gaussian%20Transform&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=Sun,%20Tao&rft.date=2021-05-01&rft.volume=38&rft.issue=5&rft.spage=831&rft.epage=844&rft.pages=831-844&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-021-0271-3&rft_dat=%3Cwanfang_jour_proqu%3Edqkxjz_e202105010%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-d9bbbcee448c00440267e3c22f763c540087cf3cce144f17c213de50992c94593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2510297311&rft_id=info:pmid/&rft_wanfj_id=dqkxjz_e202105010&rfr_iscdi=true |