Loading…
A Cross-Seasonal Linkage between Arctic Sea Ice and Eurasian Summertime Temperature Fluctuations
This study explores the linkage between summertime temperature fluctuations over midlatitude Eurasia and the preceding Arctic sea ice concentration (SIC) by utilizing the squared norm of the temperature anomaly, the essential part of local eddy available potential energy, as a metric to quantify the...
Saved in:
Published in: | Advances in atmospheric sciences 2023-12, Vol.40 (12), p.2195-2210 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study explores the linkage between summertime temperature fluctuations over midlatitude Eurasia and the preceding Arctic sea ice concentration (SIC) by utilizing the squared norm of the temperature anomaly, the essential part of local eddy available potential energy, as a metric to quantify the temperature fluctuations with weather patterns on various timescales. By comparing groups of singular value decomposition (SVD) analysis, we suggest a significant linkage between strong (weak) August 10-to-30-day temperature fluctuations over mid-west Asia and enhanced (decreased) Barents-Kara Sea ice in the previous February. We find that when the February SIC increases in the Barents-Kara Sea, a zonal dipolar pattern of SST anomalies appears in the Atlantic subpolar region and lasts from February into the summer months. Evidence suggests that in such a background state, the atmospheric circulation changes evidently from July to August, so that the August is characterized by an amplified meridional circulation over Eurasia, weakened westerlies, and high-pressure anomalies along the Arctic coast. Moreover, the 10-to-30-day wave becomes more active in the North Atlantic–Barents-Kara Sea–Central Asia regions and manifests a more evident southward propagation from the Barents-Kara Sea into the Ural region, which is responsible for the enhanced 10-to-30-day wave activity and temperature fluctuations in the region. |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/s00376-023-2313-5 |