Loading…
Seismic fragility analysis of bridges by relevance vector machine based demand prediction model
A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For e...
Saved in:
Published in: | Earthquake Engineering and Engineering Vibration 2022, Vol.21 (1), p.253-268 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3 |
container_end_page | 268 |
container_issue | 1 |
container_start_page | 253 |
container_title | Earthquake Engineering and Engineering Vibration |
container_volume | 21 |
creator | Ghosh, Swarup Chakraborty, Subrata |
description | A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For efficient fragility computation, ground motion intensity is included as an added dimension to the demand prediction model. To incorporate different sources of uncertainty, random realizations of different structural parameters are generated using Latin hypercube sampling technique. Mean fragility, along with its dispersions, is estimated based on the log-normal fragility model for different critical components of a bridge. The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches, while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark. The proposed RVM model provides a more accurate estimate of fragility than conventional approaches, with significantly less computational effort. In addition, the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves. |
doi_str_mv | 10.1007/s11803-022-2082-7 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dzgcygczd_e202201016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dzgcygczd_e202201016</wanfj_id><sourcerecordid>dzgcygczd_e202201016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3</originalsourceid><addsrcrecordid>eNp1kE1L5TAUhsugMNePH-AuMNvpeJK0SbscLuoIF1yo4C7k46QT6cedpCr1108uFVx5NjmB533hPEVxQeEXBZCXidIGeAmMlQwaVspvxYa2LS9r4E9HeReSllyI6ntxktIzgKgYF5tC3WNIQ7DER92FPswL0aPulxQSmTwxMbgOEzELidjjqx4tkle08xTJoO3fMCIxOqEjDgc9OrKP6IKdwzSSYXLYnxXHXvcJzz_e0-Lx-uph-6fc3d3cbn_vSstrPpeWOauFr5g06HQNwnlD88dbKUwlGgvOc2lkHmxrU0NlGs9Fo6vWMETDT4ufa--bHr0eO_U8vcR8SFLuvbNLZ9-dQpb1AAUqMv5jxfdx-veCaf7kWQvQSlYzyBRdKRunlCJ6tY9h0HFRFNRBu1q1q9yrDtqVzBm2ZlJmxw7jZ_PXof9PLIac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900972520</pqid></control><display><type>article</type><title>Seismic fragility analysis of bridges by relevance vector machine based demand prediction model</title><source>Springer Nature</source><creator>Ghosh, Swarup ; Chakraborty, Subrata</creator><creatorcontrib>Ghosh, Swarup ; Chakraborty, Subrata</creatorcontrib><description>A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For efficient fragility computation, ground motion intensity is included as an added dimension to the demand prediction model. To incorporate different sources of uncertainty, random realizations of different structural parameters are generated using Latin hypercube sampling technique. Mean fragility, along with its dispersions, is estimated based on the log-normal fragility model for different critical components of a bridge. The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches, while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark. The proposed RVM model provides a more accurate estimate of fragility than conventional approaches, with significantly less computational effort. In addition, the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves.</description><identifier>ISSN: 1671-3664</identifier><identifier>EISSN: 1993-503X</identifier><identifier>DOI: 10.1007/s11803-022-2082-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bridges ; Civil Engineering ; Computation ; Confidence intervals ; Control ; Critical components ; Demand ; Direct simulation Monte Carlo method ; Dynamical Systems ; Earth and Environmental Science ; Earth Sciences ; Estimates ; Fragility ; Geotechnical Engineering & Applied Earth Sciences ; Ground motion ; Hypercubes ; Latin hypercube sampling ; Machine learning ; Mathematical models ; Modelling ; Monte Carlo simulation ; Parameter uncertainty ; Parameters ; Prediction models ; Sampling techniques ; Seismic analysis ; Uncertainty ; Vibration</subject><ispartof>Earthquake Engineering and Engineering Vibration, 2022, Vol.21 (1), p.253-268</ispartof><rights>Institute of Engineering Mechanics, China Earthquake Administration 2022</rights><rights>Institute of Engineering Mechanics, China Earthquake Administration 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3</citedby><cites>FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dzgcygczd-e/dzgcygczd-e.jpg</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ghosh, Swarup</creatorcontrib><creatorcontrib>Chakraborty, Subrata</creatorcontrib><title>Seismic fragility analysis of bridges by relevance vector machine based demand prediction model</title><title>Earthquake Engineering and Engineering Vibration</title><addtitle>Earthq. Eng. Eng. Vib</addtitle><description>A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For efficient fragility computation, ground motion intensity is included as an added dimension to the demand prediction model. To incorporate different sources of uncertainty, random realizations of different structural parameters are generated using Latin hypercube sampling technique. Mean fragility, along with its dispersions, is estimated based on the log-normal fragility model for different critical components of a bridge. The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches, while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark. The proposed RVM model provides a more accurate estimate of fragility than conventional approaches, with significantly less computational effort. In addition, the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves.</description><subject>Bridges</subject><subject>Civil Engineering</subject><subject>Computation</subject><subject>Confidence intervals</subject><subject>Control</subject><subject>Critical components</subject><subject>Demand</subject><subject>Direct simulation Monte Carlo method</subject><subject>Dynamical Systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Estimates</subject><subject>Fragility</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Monte Carlo simulation</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Sampling techniques</subject><subject>Seismic analysis</subject><subject>Uncertainty</subject><subject>Vibration</subject><issn>1671-3664</issn><issn>1993-503X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1L5TAUhsugMNePH-AuMNvpeJK0SbscLuoIF1yo4C7k46QT6cedpCr1108uFVx5NjmB533hPEVxQeEXBZCXidIGeAmMlQwaVspvxYa2LS9r4E9HeReSllyI6ntxktIzgKgYF5tC3WNIQ7DER92FPswL0aPulxQSmTwxMbgOEzELidjjqx4tkle08xTJoO3fMCIxOqEjDgc9OrKP6IKdwzSSYXLYnxXHXvcJzz_e0-Lx-uph-6fc3d3cbn_vSstrPpeWOauFr5g06HQNwnlD88dbKUwlGgvOc2lkHmxrU0NlGs9Fo6vWMETDT4ufa--bHr0eO_U8vcR8SFLuvbNLZ9-dQpb1AAUqMv5jxfdx-veCaf7kWQvQSlYzyBRdKRunlCJ6tY9h0HFRFNRBu1q1q9yrDtqVzBm2ZlJmxw7jZ_PXof9PLIac</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ghosh, Swarup</creator><creator>Chakraborty, Subrata</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Department of Civil Engineering,Indian Institute of Engineering Science and Technology,Shibpur,Howrah 711103,India</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2022</creationdate><title>Seismic fragility analysis of bridges by relevance vector machine based demand prediction model</title><author>Ghosh, Swarup ; Chakraborty, Subrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bridges</topic><topic>Civil Engineering</topic><topic>Computation</topic><topic>Confidence intervals</topic><topic>Control</topic><topic>Critical components</topic><topic>Demand</topic><topic>Direct simulation Monte Carlo method</topic><topic>Dynamical Systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Estimates</topic><topic>Fragility</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Monte Carlo simulation</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Sampling techniques</topic><topic>Seismic analysis</topic><topic>Uncertainty</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Swarup</creatorcontrib><creatorcontrib>Chakraborty, Subrata</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Earthquake Engineering and Engineering Vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Swarup</au><au>Chakraborty, Subrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic fragility analysis of bridges by relevance vector machine based demand prediction model</atitle><jtitle>Earthquake Engineering and Engineering Vibration</jtitle><stitle>Earthq. Eng. Eng. Vib</stitle><date>2022</date><risdate>2022</risdate><volume>21</volume><issue>1</issue><spage>253</spage><epage>268</epage><pages>253-268</pages><issn>1671-3664</issn><eissn>1993-503X</eissn><abstract>A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For efficient fragility computation, ground motion intensity is included as an added dimension to the demand prediction model. To incorporate different sources of uncertainty, random realizations of different structural parameters are generated using Latin hypercube sampling technique. Mean fragility, along with its dispersions, is estimated based on the log-normal fragility model for different critical components of a bridge. The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches, while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark. The proposed RVM model provides a more accurate estimate of fragility than conventional approaches, with significantly less computational effort. In addition, the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11803-022-2082-7</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1671-3664 |
ispartof | Earthquake Engineering and Engineering Vibration, 2022, Vol.21 (1), p.253-268 |
issn | 1671-3664 1993-503X |
language | eng |
recordid | cdi_wanfang_journals_dzgcygczd_e202201016 |
source | Springer Nature |
subjects | Bridges Civil Engineering Computation Confidence intervals Control Critical components Demand Direct simulation Monte Carlo method Dynamical Systems Earth and Environmental Science Earth Sciences Estimates Fragility Geotechnical Engineering & Applied Earth Sciences Ground motion Hypercubes Latin hypercube sampling Machine learning Mathematical models Modelling Monte Carlo simulation Parameter uncertainty Parameters Prediction models Sampling techniques Seismic analysis Uncertainty Vibration |
title | Seismic fragility analysis of bridges by relevance vector machine based demand prediction model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20fragility%20analysis%20of%20bridges%20by%20relevance%20vector%20machine%20based%20demand%20prediction%20model&rft.jtitle=Earthquake%20Engineering%20and%20Engineering%20Vibration&rft.au=Ghosh,%20Swarup&rft.date=2022&rft.volume=21&rft.issue=1&rft.spage=253&rft.epage=268&rft.pages=253-268&rft.issn=1671-3664&rft.eissn=1993-503X&rft_id=info:doi/10.1007/s11803-022-2082-7&rft_dat=%3Cwanfang_jour_proqu%3Edzgcygczd_e202201016%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2900972520&rft_id=info:pmid/&rft_wanfj_id=dzgcygczd_e202201016&rfr_iscdi=true |