Loading…

Seismic fragility analysis of bridges by relevance vector machine based demand prediction model

A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For e...

Full description

Saved in:
Bibliographic Details
Published in:Earthquake Engineering and Engineering Vibration 2022, Vol.21 (1), p.253-268
Main Authors: Ghosh, Swarup, Chakraborty, Subrata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3
cites cdi_FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3
container_end_page 268
container_issue 1
container_start_page 253
container_title Earthquake Engineering and Engineering Vibration
container_volume 21
creator Ghosh, Swarup
Chakraborty, Subrata
description A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For efficient fragility computation, ground motion intensity is included as an added dimension to the demand prediction model. To incorporate different sources of uncertainty, random realizations of different structural parameters are generated using Latin hypercube sampling technique. Mean fragility, along with its dispersions, is estimated based on the log-normal fragility model for different critical components of a bridge. The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches, while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark. The proposed RVM model provides a more accurate estimate of fragility than conventional approaches, with significantly less computational effort. In addition, the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves.
doi_str_mv 10.1007/s11803-022-2082-7
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_dzgcygczd_e202201016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>dzgcygczd_e202201016</wanfj_id><sourcerecordid>dzgcygczd_e202201016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3</originalsourceid><addsrcrecordid>eNp1kE1L5TAUhsugMNePH-AuMNvpeJK0SbscLuoIF1yo4C7k46QT6cedpCr1108uFVx5NjmB533hPEVxQeEXBZCXidIGeAmMlQwaVspvxYa2LS9r4E9HeReSllyI6ntxktIzgKgYF5tC3WNIQ7DER92FPswL0aPulxQSmTwxMbgOEzELidjjqx4tkle08xTJoO3fMCIxOqEjDgc9OrKP6IKdwzSSYXLYnxXHXvcJzz_e0-Lx-uph-6fc3d3cbn_vSstrPpeWOauFr5g06HQNwnlD88dbKUwlGgvOc2lkHmxrU0NlGs9Fo6vWMETDT4ufa--bHr0eO_U8vcR8SFLuvbNLZ9-dQpb1AAUqMv5jxfdx-veCaf7kWQvQSlYzyBRdKRunlCJ6tY9h0HFRFNRBu1q1q9yrDtqVzBm2ZlJmxw7jZ_PXof9PLIac</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900972520</pqid></control><display><type>article</type><title>Seismic fragility analysis of bridges by relevance vector machine based demand prediction model</title><source>Springer Nature</source><creator>Ghosh, Swarup ; Chakraborty, Subrata</creator><creatorcontrib>Ghosh, Swarup ; Chakraborty, Subrata</creatorcontrib><description>A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For efficient fragility computation, ground motion intensity is included as an added dimension to the demand prediction model. To incorporate different sources of uncertainty, random realizations of different structural parameters are generated using Latin hypercube sampling technique. Mean fragility, along with its dispersions, is estimated based on the log-normal fragility model for different critical components of a bridge. The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches, while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark. The proposed RVM model provides a more accurate estimate of fragility than conventional approaches, with significantly less computational effort. In addition, the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves.</description><identifier>ISSN: 1671-3664</identifier><identifier>EISSN: 1993-503X</identifier><identifier>DOI: 10.1007/s11803-022-2082-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bridges ; Civil Engineering ; Computation ; Confidence intervals ; Control ; Critical components ; Demand ; Direct simulation Monte Carlo method ; Dynamical Systems ; Earth and Environmental Science ; Earth Sciences ; Estimates ; Fragility ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ground motion ; Hypercubes ; Latin hypercube sampling ; Machine learning ; Mathematical models ; Modelling ; Monte Carlo simulation ; Parameter uncertainty ; Parameters ; Prediction models ; Sampling techniques ; Seismic analysis ; Uncertainty ; Vibration</subject><ispartof>Earthquake Engineering and Engineering Vibration, 2022, Vol.21 (1), p.253-268</ispartof><rights>Institute of Engineering Mechanics, China Earthquake Administration 2022</rights><rights>Institute of Engineering Mechanics, China Earthquake Administration 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3</citedby><cites>FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/dzgcygczd-e/dzgcygczd-e.jpg</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ghosh, Swarup</creatorcontrib><creatorcontrib>Chakraborty, Subrata</creatorcontrib><title>Seismic fragility analysis of bridges by relevance vector machine based demand prediction model</title><title>Earthquake Engineering and Engineering Vibration</title><addtitle>Earthq. Eng. Eng. Vib</addtitle><description>A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For efficient fragility computation, ground motion intensity is included as an added dimension to the demand prediction model. To incorporate different sources of uncertainty, random realizations of different structural parameters are generated using Latin hypercube sampling technique. Mean fragility, along with its dispersions, is estimated based on the log-normal fragility model for different critical components of a bridge. The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches, while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark. The proposed RVM model provides a more accurate estimate of fragility than conventional approaches, with significantly less computational effort. In addition, the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves.</description><subject>Bridges</subject><subject>Civil Engineering</subject><subject>Computation</subject><subject>Confidence intervals</subject><subject>Control</subject><subject>Critical components</subject><subject>Demand</subject><subject>Direct simulation Monte Carlo method</subject><subject>Dynamical Systems</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Estimates</subject><subject>Fragility</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ground motion</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Monte Carlo simulation</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Prediction models</subject><subject>Sampling techniques</subject><subject>Seismic analysis</subject><subject>Uncertainty</subject><subject>Vibration</subject><issn>1671-3664</issn><issn>1993-503X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1L5TAUhsugMNePH-AuMNvpeJK0SbscLuoIF1yo4C7k46QT6cedpCr1108uFVx5NjmB533hPEVxQeEXBZCXidIGeAmMlQwaVspvxYa2LS9r4E9HeReSllyI6ntxktIzgKgYF5tC3WNIQ7DER92FPswL0aPulxQSmTwxMbgOEzELidjjqx4tkle08xTJoO3fMCIxOqEjDgc9OrKP6IKdwzSSYXLYnxXHXvcJzz_e0-Lx-uph-6fc3d3cbn_vSstrPpeWOauFr5g06HQNwnlD88dbKUwlGgvOc2lkHmxrU0NlGs9Fo6vWMETDT4ufa--bHr0eO_U8vcR8SFLuvbNLZ9-dQpb1AAUqMv5jxfdx-veCaf7kWQvQSlYzyBRdKRunlCJ6tY9h0HFRFNRBu1q1q9yrDtqVzBm2ZlJmxw7jZ_PXof9PLIac</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Ghosh, Swarup</creator><creator>Chakraborty, Subrata</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Department of Civil Engineering,Indian Institute of Engineering Science and Technology,Shibpur,Howrah 711103,India</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2022</creationdate><title>Seismic fragility analysis of bridges by relevance vector machine based demand prediction model</title><author>Ghosh, Swarup ; Chakraborty, Subrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bridges</topic><topic>Civil Engineering</topic><topic>Computation</topic><topic>Confidence intervals</topic><topic>Control</topic><topic>Critical components</topic><topic>Demand</topic><topic>Direct simulation Monte Carlo method</topic><topic>Dynamical Systems</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Estimates</topic><topic>Fragility</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ground motion</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Monte Carlo simulation</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Prediction models</topic><topic>Sampling techniques</topic><topic>Seismic analysis</topic><topic>Uncertainty</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghosh, Swarup</creatorcontrib><creatorcontrib>Chakraborty, Subrata</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Earthquake Engineering and Engineering Vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghosh, Swarup</au><au>Chakraborty, Subrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seismic fragility analysis of bridges by relevance vector machine based demand prediction model</atitle><jtitle>Earthquake Engineering and Engineering Vibration</jtitle><stitle>Earthq. Eng. Eng. Vib</stitle><date>2022</date><risdate>2022</risdate><volume>21</volume><issue>1</issue><spage>253</spage><epage>268</epage><pages>253-268</pages><issn>1671-3664</issn><eissn>1993-503X</eissn><abstract>A relevance vector machine (RVM) based demand prediction model is explored for efficient seismic fragility analysis (SFA) of a bridge structure. The proposed RVM model integrates both record-to-record variations of ground motions and uncertainties of parameters characterizing the bridge model. For efficient fragility computation, ground motion intensity is included as an added dimension to the demand prediction model. To incorporate different sources of uncertainty, random realizations of different structural parameters are generated using Latin hypercube sampling technique. Mean fragility, along with its dispersions, is estimated based on the log-normal fragility model for different critical components of a bridge. The effectiveness of the proposed RVM model-based SFA of a bridge structure is elucidated numerically by comparing it with fragility results obtained by the commonly used SFA approaches, while considering the most accurate direct Monte Carlo simulation-based fragility estimates as the benchmark. The proposed RVM model provides a more accurate estimate of fragility than conventional approaches, with significantly less computational effort. In addition, the proposed model provides a measure of uncertainty in fragility estimates by constructing confidence intervals for the fragility curves.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11803-022-2082-7</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1671-3664
ispartof Earthquake Engineering and Engineering Vibration, 2022, Vol.21 (1), p.253-268
issn 1671-3664
1993-503X
language eng
recordid cdi_wanfang_journals_dzgcygczd_e202201016
source Springer Nature
subjects Bridges
Civil Engineering
Computation
Confidence intervals
Control
Critical components
Demand
Direct simulation Monte Carlo method
Dynamical Systems
Earth and Environmental Science
Earth Sciences
Estimates
Fragility
Geotechnical Engineering & Applied Earth Sciences
Ground motion
Hypercubes
Latin hypercube sampling
Machine learning
Mathematical models
Modelling
Monte Carlo simulation
Parameter uncertainty
Parameters
Prediction models
Sampling techniques
Seismic analysis
Uncertainty
Vibration
title Seismic fragility analysis of bridges by relevance vector machine based demand prediction model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seismic%20fragility%20analysis%20of%20bridges%20by%20relevance%20vector%20machine%20based%20demand%20prediction%20model&rft.jtitle=Earthquake%20Engineering%20and%20Engineering%20Vibration&rft.au=Ghosh,%20Swarup&rft.date=2022&rft.volume=21&rft.issue=1&rft.spage=253&rft.epage=268&rft.pages=253-268&rft.issn=1671-3664&rft.eissn=1993-503X&rft_id=info:doi/10.1007/s11803-022-2082-7&rft_dat=%3Cwanfang_jour_proqu%3Edzgcygczd_e202201016%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-c2dca6f427beda506dfb127bfc76b468c0df37b7777e95b504b8f368a49b2eeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2900972520&rft_id=info:pmid/&rft_wanfj_id=dzgcygczd_e202201016&rfr_iscdi=true