Loading…
DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION
Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second orde...
Saved in:
Published in: | Journal of electronics (China) 2006, Vol.23 (1), p.103-106 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3 |
container_end_page | 106 |
container_issue | 1 |
container_start_page | 103 |
container_title | Journal of electronics (China) |
container_volume | 23 |
creator | Long, Fei He, Jinsong Ye, Xueyi Zhuang, Zhenquan Li, Bin |
description | Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available. |
doi_str_mv | 10.1007/s11767-004-0075-5 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e200601022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>21073546</cqvip_id><wanfj_id>dzkxxk_e200601022</wanfj_id><sourcerecordid>dzkxxk_e200601022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMIHcIu4cQis17HdHEMINFKbRE174GQ5Tlz6IIVEiMLX46qV9jFazexIQ8gthQcKIB97SqWQPkDgWnKfn5EBDUPmg6D8nAwAqfTDEeIluer7NQBnIw4DMn5Oy3iWTtMsyuZemj0nReKGw3E-LfLsgKIsmryVaelFrrxy8VQWUZx4s6SYJaUjRPM0z67JhdXbvrk57SFZvCTzeOxP8tc0jia-oZyib6FB0dQ8bFDqMAhFwEQwqmXlEOeoEQ2zomKhNbaS6G7cIGptpOG1CDQbkvvj3x_dWt0u1Xr33bXOUdV_m_1-oxoEEEAB0XHpkWu6Xd93jVWf3epDd7-KgjrEpo6xKRebOsSmuNPcnTTvu3b5tXIOlTYbu9o2CilIxgPB_gH6EmQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION</title><source>SpringerLink Contemporary</source><creator>Long, Fei ; He, Jinsong ; Ye, Xueyi ; Zhuang, Zhenquan ; Li, Bin</creator><creatorcontrib>Long, Fei ; He, Jinsong ; Ye, Xueyi ; Zhuang, Zhenquan ; Li, Bin</creatorcontrib><description>Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-004-0075-5</identifier><language>eng</language><publisher>Dept of Electronic Science and Technology,USTC,Hefei 230026,China</publisher><subject>DICA ; 子空间分析 ; 成分分析 ; 特征提取 ; 面部识别</subject><ispartof>Journal of electronics (China), 2006, Vol.23 (1), p.103-106</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3</citedby><cites>FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,780,784,1644,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>He, Jinsong</creatorcontrib><creatorcontrib>Ye, Xueyi</creatorcontrib><creatorcontrib>Zhuang, Zhenquan</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><title>DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION</title><title>Journal of electronics (China)</title><addtitle>Journal of Electronics</addtitle><description>Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.</description><subject>DICA</subject><subject>子空间分析</subject><subject>成分分析</subject><subject>特征提取</subject><subject>面部识别</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQtBBIlMIHcIu4cQis17HdHEMINFKbRE174GQ5Tlz6IIVEiMLX46qV9jFazexIQ8gthQcKIB97SqWQPkDgWnKfn5EBDUPmg6D8nAwAqfTDEeIluer7NQBnIw4DMn5Oy3iWTtMsyuZemj0nReKGw3E-LfLsgKIsmryVaelFrrxy8VQWUZx4s6SYJaUjRPM0z67JhdXbvrk57SFZvCTzeOxP8tc0jia-oZyib6FB0dQ8bFDqMAhFwEQwqmXlEOeoEQ2zomKhNbaS6G7cIGptpOG1CDQbkvvj3x_dWt0u1Xr33bXOUdV_m_1-oxoEEEAB0XHpkWu6Xd93jVWf3epDd7-KgjrEpo6xKRebOsSmuNPcnTTvu3b5tXIOlTYbu9o2CilIxgPB_gH6EmQE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Long, Fei</creator><creator>He, Jinsong</creator><creator>Ye, Xueyi</creator><creator>Zhuang, Zhenquan</creator><creator>Li, Bin</creator><general>Dept of Electronic Science and Technology,USTC,Hefei 230026,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2006</creationdate><title>DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION</title><author>Long, Fei ; He, Jinsong ; Ye, Xueyi ; Zhuang, Zhenquan ; Li, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>DICA</topic><topic>子空间分析</topic><topic>成分分析</topic><topic>特征提取</topic><topic>面部识别</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>He, Jinsong</creatorcontrib><creatorcontrib>Ye, Xueyi</creatorcontrib><creatorcontrib>Zhuang, Zhenquan</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Fei</au><au>He, Jinsong</au><au>Ye, Xueyi</au><au>Zhuang, Zhenquan</au><au>Li, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION</atitle><jtitle>Journal of electronics (China)</jtitle><addtitle>Journal of Electronics</addtitle><date>2006</date><risdate>2006</risdate><volume>23</volume><issue>1</issue><spage>103</spage><epage>106</epage><pages>103-106</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.</abstract><pub>Dept of Electronic Science and Technology,USTC,Hefei 230026,China</pub><doi>10.1007/s11767-004-0075-5</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0217-9822 |
ispartof | Journal of electronics (China), 2006, Vol.23 (1), p.103-106 |
issn | 0217-9822 1993-0615 |
language | eng |
recordid | cdi_wanfang_journals_dzkxxk_e200601022 |
source | SpringerLink Contemporary |
subjects | DICA 子空间分析 成分分析 特征提取 面部识别 |
title | DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DISCRIMINANT%20INDEPENDENT%20COMPONENT%20ANALYSIS%20AS%20A%20SUBSPACE%20REPRESENTATION&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Long,%20Fei&rft.date=2006&rft.volume=23&rft.issue=1&rft.spage=103&rft.epage=106&rft.pages=103-106&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-004-0075-5&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e200601022%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=21073546&rft_wanfj_id=dzkxxk_e200601022&rfr_iscdi=true |