Loading…

DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION

Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second orde...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronics (China) 2006, Vol.23 (1), p.103-106
Main Authors: Long, Fei, He, Jinsong, Ye, Xueyi, Zhuang, Zhenquan, Li, Bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3
cites cdi_FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3
container_end_page 106
container_issue 1
container_start_page 103
container_title Journal of electronics (China)
container_volume 23
creator Long, Fei
He, Jinsong
Ye, Xueyi
Zhuang, Zhenquan
Li, Bin
description Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.
doi_str_mv 10.1007/s11767-004-0075-5
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e200601022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>21073546</cqvip_id><wanfj_id>dzkxxk_e200601022</wanfj_id><sourcerecordid>dzkxxk_e200601022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3</originalsourceid><addsrcrecordid>eNotUMtOwzAQtBBIlMIHcIu4cQis17HdHEMINFKbRE174GQ5Tlz6IIVEiMLX46qV9jFazexIQ8gthQcKIB97SqWQPkDgWnKfn5EBDUPmg6D8nAwAqfTDEeIluer7NQBnIw4DMn5Oy3iWTtMsyuZemj0nReKGw3E-LfLsgKIsmryVaelFrrxy8VQWUZx4s6SYJaUjRPM0z67JhdXbvrk57SFZvCTzeOxP8tc0jia-oZyib6FB0dQ8bFDqMAhFwEQwqmXlEOeoEQ2zomKhNbaS6G7cIGptpOG1CDQbkvvj3x_dWt0u1Xr33bXOUdV_m_1-oxoEEEAB0XHpkWu6Xd93jVWf3epDd7-KgjrEpo6xKRebOsSmuNPcnTTvu3b5tXIOlTYbu9o2CilIxgPB_gH6EmQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION</title><source>SpringerLink Contemporary</source><creator>Long, Fei ; He, Jinsong ; Ye, Xueyi ; Zhuang, Zhenquan ; Li, Bin</creator><creatorcontrib>Long, Fei ; He, Jinsong ; Ye, Xueyi ; Zhuang, Zhenquan ; Li, Bin</creatorcontrib><description>Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-004-0075-5</identifier><language>eng</language><publisher>Dept of Electronic Science and Technology,USTC,Hefei 230026,China</publisher><subject>DICA ; 子空间分析 ; 成分分析 ; 特征提取 ; 面部识别</subject><ispartof>Journal of electronics (China), 2006, Vol.23 (1), p.103-106</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3</citedby><cites>FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><link.rule.ids>314,780,784,1644,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>He, Jinsong</creatorcontrib><creatorcontrib>Ye, Xueyi</creatorcontrib><creatorcontrib>Zhuang, Zhenquan</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><title>DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION</title><title>Journal of electronics (China)</title><addtitle>Journal of Electronics</addtitle><description>Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.</description><subject>DICA</subject><subject>子空间分析</subject><subject>成分分析</subject><subject>特征提取</subject><subject>面部识别</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNotUMtOwzAQtBBIlMIHcIu4cQis17HdHEMINFKbRE174GQ5Tlz6IIVEiMLX46qV9jFazexIQ8gthQcKIB97SqWQPkDgWnKfn5EBDUPmg6D8nAwAqfTDEeIluer7NQBnIw4DMn5Oy3iWTtMsyuZemj0nReKGw3E-LfLsgKIsmryVaelFrrxy8VQWUZx4s6SYJaUjRPM0z67JhdXbvrk57SFZvCTzeOxP8tc0jia-oZyib6FB0dQ8bFDqMAhFwEQwqmXlEOeoEQ2zomKhNbaS6G7cIGptpOG1CDQbkvvj3x_dWt0u1Xr33bXOUdV_m_1-oxoEEEAB0XHpkWu6Xd93jVWf3epDd7-KgjrEpo6xKRebOsSmuNPcnTTvu3b5tXIOlTYbu9o2CilIxgPB_gH6EmQE</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Long, Fei</creator><creator>He, Jinsong</creator><creator>Ye, Xueyi</creator><creator>Zhuang, Zhenquan</creator><creator>Li, Bin</creator><general>Dept of Electronic Science and Technology,USTC,Hefei 230026,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2006</creationdate><title>DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION</title><author>Long, Fei ; He, Jinsong ; Ye, Xueyi ; Zhuang, Zhenquan ; Li, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>DICA</topic><topic>子空间分析</topic><topic>成分分析</topic><topic>特征提取</topic><topic>面部识别</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Fei</creatorcontrib><creatorcontrib>He, Jinsong</creatorcontrib><creatorcontrib>Ye, Xueyi</creatorcontrib><creatorcontrib>Zhuang, Zhenquan</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Fei</au><au>He, Jinsong</au><au>Ye, Xueyi</au><au>Zhuang, Zhenquan</au><au>Li, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION</atitle><jtitle>Journal of electronics (China)</jtitle><addtitle>Journal of Electronics</addtitle><date>2006</date><risdate>2006</risdate><volume>23</volume><issue>1</issue><spage>103</spage><epage>106</epage><pages>103-106</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>Subspace modeling plays an important role in face recognition. Independent Component Analysis (ICA), a multivariable statistical analysis technique, can be seen as an extension of traditional Principal Com- ponent Analysis (PCA) technique, which addresses high order statistics as well as second order statistics. In this paper, a new scheme of subspace-based representation called Discriminant Independent Component Analysis (DICA) is proposed, which combines the strength" of unsupervised learning of ICA and supcrvised learning of Linear Discriminant Analysis (LDA), and efficiently enhances the generalization ability of ICA-based representation method. Based on DICA subspace analysis, a set of optimal vectors called "discriminant independent faces" are learned from face samples. The effectiveness of our method is demonstrated by performance comparisons with some popular methods such as ICA, PCA, and PCA+LDA. On the large scale database of IIS, significant improvements are observed when there are fewer training samples per person available.</abstract><pub>Dept of Electronic Science and Technology,USTC,Hefei 230026,China</pub><doi>10.1007/s11767-004-0075-5</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0217-9822
ispartof Journal of electronics (China), 2006, Vol.23 (1), p.103-106
issn 0217-9822
1993-0615
language eng
recordid cdi_wanfang_journals_dzkxxk_e200601022
source SpringerLink Contemporary
subjects DICA
子空间分析
成分分析
特征提取
面部识别
title DISCRIMINANT INDEPENDENT COMPONENT ANALYSIS AS A SUBSPACE REPRESENTATION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DISCRIMINANT%20INDEPENDENT%20COMPONENT%20ANALYSIS%20AS%20A%20SUBSPACE%20REPRESENTATION&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Long,%20Fei&rft.date=2006&rft.volume=23&rft.issue=1&rft.spage=103&rft.epage=106&rft.pages=103-106&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-004-0075-5&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e200601022%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1512-f0e26ed59e27a949643648d7b964552a22c3f6b39fcfb724555c22aac7c5d64a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=21073546&rft_wanfj_id=dzkxxk_e200601022&rfr_iscdi=true