Loading…

ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION

When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronics (China) 2008, Vol.25 (3), p.352-357
Main Authors: Wang, Xianji, Ye, Xueyi, Li, Bin, Li, Xin, Zhuang, Zhenquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3
container_end_page 357
container_issue 3
container_start_page 352
container_title Journal of electronics (China)
container_volume 25
creator Wang, Xianji
Ye, Xueyi
Li, Bin
Li, Xin
Zhuang, Zhenquan
description When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is demonstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.
doi_str_mv 10.1007/s11767-006-0213-3
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e200803011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>27525374</cqvip_id><wanfj_id>dzkxxk_e200803011</wanfj_id><sourcerecordid>dzkxxk_e200803011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giNgbDnV3b8cCQhrSNVBqpKQOT5bRO6QcpJEIUfj2uUomN4XTS6X3ulR5CrhHuEEDdN4hKKgogKTDklJ-QDmrNKUgUp6Tjj4rqkLFzctE0awDBQwEd8hDlL0_9LMtntB_lyWMwSPNRMg3G6SSJpkE8jvI8HaT-Msj8RHESTJM4G07SWZpNLslZabeNuzruLnkeJLN4RMfZMI2jMZ0zlEglWMEFlPNSSGULVNw6kD3ttAyV7bmS6YXDUGrJC-EWAlCWodbICu2UZAXvktv275etSlstzXr3WVe-0Sx-Nvv9xjgGEAIHRJ_FNjuvd01Tu9K816s3W38bBHNwZVpXxrsyB1eGe4a1TOOz1dLVfwX_QTfHotddtfzwnCnsfFOuts4wJZjgqsd_Adhub-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Wang, Xianji ; Ye, Xueyi ; Li, Bin ; Li, Xin ; Zhuang, Zhenquan</creator><creatorcontrib>Wang, Xianji ; Ye, Xueyi ; Li, Bin ; Li, Xin ; Zhuang, Zhenquan</creatorcontrib><description>When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is demonstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-006-0213-3</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering ; 分类器 ; 判别方式 ; 脸部识别技术 ; 识别模式</subject><ispartof>Journal of electronics (China), 2008, Vol.25 (3), p.352-357</ispartof><rights>Science Press 2008</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11767-006-0213-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11767-006-0213-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1644,27924,27925,41418,42487,51318</link.rule.ids></links><search><creatorcontrib>Wang, Xianji</creatorcontrib><creatorcontrib>Ye, Xueyi</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhuang, Zhenquan</creatorcontrib><title>ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is demonstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>分类器</subject><subject>判别方式</subject><subject>脸部识别技术</subject><subject>识别模式</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giNgbDnV3b8cCQhrSNVBqpKQOT5bRO6QcpJEIUfj2uUomN4XTS6X3ulR5CrhHuEEDdN4hKKgogKTDklJ-QDmrNKUgUp6Tjj4rqkLFzctE0awDBQwEd8hDlL0_9LMtntB_lyWMwSPNRMg3G6SSJpkE8jvI8HaT-Msj8RHESTJM4G07SWZpNLslZabeNuzruLnkeJLN4RMfZMI2jMZ0zlEglWMEFlPNSSGULVNw6kD3ttAyV7bmS6YXDUGrJC-EWAlCWodbICu2UZAXvktv275etSlstzXr3WVe-0Sx-Nvv9xjgGEAIHRJ_FNjuvd01Tu9K816s3W38bBHNwZVpXxrsyB1eGe4a1TOOz1dLVfwX_QTfHotddtfzwnCnsfFOuts4wJZjgqsd_Adhub-s</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Wang, Xianji</creator><creator>Ye, Xueyi</creator><creator>Li, Bin</creator><creator>Li, Xin</creator><creator>Zhuang, Zhenquan</creator><general>SP Science Press</general><general>MOE-Microsoft Key Laboratory of Multimedia Computing and Communication, University of Science and Technology of China, Hefei 230026, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2008</creationdate><title>ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION</title><author>Wang, Xianji ; Ye, Xueyi ; Li, Bin ; Li, Xin ; Zhuang, Zhenquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>分类器</topic><topic>判别方式</topic><topic>脸部识别技术</topic><topic>识别模式</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xianji</creatorcontrib><creatorcontrib>Ye, Xueyi</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhuang, Zhenquan</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xianji</au><au>Ye, Xueyi</au><au>Li, Bin</au><au>Li, Xin</au><au>Zhuang, Zhenquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2008</date><risdate>2008</risdate><volume>25</volume><issue>3</issue><spage>352</spage><epage>357</epage><pages>352-357</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is demonstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-006-0213-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0217-9822
ispartof Journal of electronics (China), 2008, Vol.25 (3), p.352-357
issn 0217-9822
1993-0615
language eng
recordid cdi_wanfang_journals_dzkxxk_e200803011
source Springer Nature - Connect here FIRST to enable access
subjects Electrical Engineering
Engineering
分类器
判别方式
脸部识别技术
识别模式
title ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMBOOST-BASED%20FISHER%20LINEAR%20CLASSIFIER%20FOR%20FACE%20RECOGNITION&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Wang,%20Xianji&rft.date=2008&rft.volume=25&rft.issue=3&rft.spage=352&rft.epage=357&rft.pages=352-357&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-006-0213-3&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e200803011%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=27525374&rft_wanfj_id=dzkxxk_e200803011&rfr_iscdi=true