Loading…
ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION
When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained...
Saved in:
Published in: | Journal of electronics (China) 2008, Vol.25 (3), p.352-357 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3 |
container_end_page | 357 |
container_issue | 3 |
container_start_page | 352 |
container_title | Journal of electronics (China) |
container_volume | 25 |
creator | Wang, Xianji Ye, Xueyi Li, Bin Li, Xin Zhuang, Zhenquan |
description | When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is demonstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself. |
doi_str_mv | 10.1007/s11767-006-0213-3 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_dzkxxk_e200803011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>27525374</cqvip_id><wanfj_id>dzkxxk_e200803011</wanfj_id><sourcerecordid>dzkxxk_e200803011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9giNgbDnV3b8cCQhrSNVBqpKQOT5bRO6QcpJEIUfj2uUomN4XTS6X3ulR5CrhHuEEDdN4hKKgogKTDklJ-QDmrNKUgUp6Tjj4rqkLFzctE0awDBQwEd8hDlL0_9LMtntB_lyWMwSPNRMg3G6SSJpkE8jvI8HaT-Msj8RHESTJM4G07SWZpNLslZabeNuzruLnkeJLN4RMfZMI2jMZ0zlEglWMEFlPNSSGULVNw6kD3ttAyV7bmS6YXDUGrJC-EWAlCWodbICu2UZAXvktv275etSlstzXr3WVe-0Sx-Nvv9xjgGEAIHRJ_FNjuvd01Tu9K816s3W38bBHNwZVpXxrsyB1eGe4a1TOOz1dLVfwX_QTfHotddtfzwnCnsfFOuts4wJZjgqsd_Adhub-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION</title><source>Springer Nature - Connect here FIRST to enable access</source><creator>Wang, Xianji ; Ye, Xueyi ; Li, Bin ; Li, Xin ; Zhuang, Zhenquan</creator><creatorcontrib>Wang, Xianji ; Ye, Xueyi ; Li, Bin ; Li, Xin ; Zhuang, Zhenquan</creatorcontrib><description>When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is demonstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.</description><identifier>ISSN: 0217-9822</identifier><identifier>EISSN: 1993-0615</identifier><identifier>DOI: 10.1007/s11767-006-0213-3</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Electrical Engineering ; Engineering ; 分类器 ; 判别方式 ; 脸部识别技术 ; 识别模式</subject><ispartof>Journal of electronics (China), 2008, Vol.25 (3), p.352-357</ispartof><rights>Science Press 2008</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85266X/85266X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11767-006-0213-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11767-006-0213-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1644,27924,27925,41418,42487,51318</link.rule.ids></links><search><creatorcontrib>Wang, Xianji</creatorcontrib><creatorcontrib>Ye, Xueyi</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhuang, Zhenquan</creatorcontrib><title>ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION</title><title>Journal of electronics (China)</title><addtitle>J. Electron.(China)</addtitle><addtitle>Journal of Electronics</addtitle><description>When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is demonstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.</description><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>分类器</subject><subject>判别方式</subject><subject>脸部识别技术</subject><subject>识别模式</subject><issn>0217-9822</issn><issn>1993-0615</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9giNgbDnV3b8cCQhrSNVBqpKQOT5bRO6QcpJEIUfj2uUomN4XTS6X3ulR5CrhHuEEDdN4hKKgogKTDklJ-QDmrNKUgUp6Tjj4rqkLFzctE0awDBQwEd8hDlL0_9LMtntB_lyWMwSPNRMg3G6SSJpkE8jvI8HaT-Msj8RHESTJM4G07SWZpNLslZabeNuzruLnkeJLN4RMfZMI2jMZ0zlEglWMEFlPNSSGULVNw6kD3ttAyV7bmS6YXDUGrJC-EWAlCWodbICu2UZAXvktv275etSlstzXr3WVe-0Sx-Nvv9xjgGEAIHRJ_FNjuvd01Tu9K816s3W38bBHNwZVpXxrsyB1eGe4a1TOOz1dLVfwX_QTfHotddtfzwnCnsfFOuts4wJZjgqsd_Adhub-s</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Wang, Xianji</creator><creator>Ye, Xueyi</creator><creator>Li, Bin</creator><creator>Li, Xin</creator><creator>Zhuang, Zhenquan</creator><general>SP Science Press</general><general>MOE-Microsoft Key Laboratory of Multimedia Computing and Communication, University of Science and Technology of China, Hefei 230026, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2008</creationdate><title>ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION</title><author>Wang, Xianji ; Ye, Xueyi ; Li, Bin ; Li, Xin ; Zhuang, Zhenquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>分类器</topic><topic>判别方式</topic><topic>脸部识别技术</topic><topic>识别模式</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xianji</creatorcontrib><creatorcontrib>Ye, Xueyi</creatorcontrib><creatorcontrib>Li, Bin</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhuang, Zhenquan</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of electronics (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xianji</au><au>Ye, Xueyi</au><au>Li, Bin</au><au>Li, Xin</au><au>Zhuang, Zhenquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION</atitle><jtitle>Journal of electronics (China)</jtitle><stitle>J. Electron.(China)</stitle><addtitle>Journal of Electronics</addtitle><date>2008</date><risdate>2008</risdate><volume>25</volume><issue>3</issue><spage>352</spage><epage>357</epage><pages>352-357</pages><issn>0217-9822</issn><eissn>1993-0615</eissn><abstract>When using AdaBoost to select discriminant features from some feature space (e.g. Gabor feature space) for face recognition, cascade structure is usually adopted to leverage the asymmetry in the distribution of positive and negative samples. Each node in the cascade structure is a classifier trained by AdaBoost with an asymmetric learning goal of high recognition rate but only moderate low false positive rate. One limitation of AdaBoost arises in the context of skewed example distribution and cascade classifiers: AdaBoost minimizes the classification error, which is not guaranteed to achieve the asymmetric node learning goal. In this paper, we propose to use the asymmetric AdaBoost (Asym-Boost) as a mechanism to address the asymmetric node learning goal. Moreover, the two parts of the selecting features and forming ensemble classifiers are decoupled, both of which occur simultaneously in AsymBoost and AdaBoost. Fisher Linear Discriminant Analysis (FLDA) is used on the selected features to learn a linear discriminant function that maximizes the separability of data among the different classes, which we think can improve the recognition performance. The proposed algorithm is demonstrated with face recognition using a Gabor based representation on the FERET database. Experimental results show that the proposed algorithm yields better recognition performance than AdaBoost itself.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s11767-006-0213-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0217-9822 |
ispartof | Journal of electronics (China), 2008, Vol.25 (3), p.352-357 |
issn | 0217-9822 1993-0615 |
language | eng |
recordid | cdi_wanfang_journals_dzkxxk_e200803011 |
source | Springer Nature - Connect here FIRST to enable access |
subjects | Electrical Engineering Engineering 分类器 判别方式 脸部识别技术 识别模式 |
title | ASYMBOOST-BASED FISHER LINEAR CLASSIFIER FOR FACE RECOGNITION |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ASYMBOOST-BASED%20FISHER%20LINEAR%20CLASSIFIER%20FOR%20FACE%20RECOGNITION&rft.jtitle=Journal%20of%20electronics%20(China)&rft.au=Wang,%20Xianji&rft.date=2008&rft.volume=25&rft.issue=3&rft.spage=352&rft.epage=357&rft.pages=352-357&rft.issn=0217-9822&rft.eissn=1993-0615&rft_id=info:doi/10.1007/s11767-006-0213-3&rft_dat=%3Cwanfang_jour_cross%3Edzkxxk_e200803011%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2161-60a5350fcf567ab173ae0649e9687a4ef29de186963b5ed5016f89912b9e762b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=27525374&rft_wanfj_id=dzkxxk_e200803011&rfr_iscdi=true |