Loading…

Origin of Listwanite in the Luobusa Ophiolite, Tibet, Implications for Chromite Stability in Hydrothermal Systems

Listwanite from the Luobusa ophiolite, Tibet, forms a narrow, discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mineral transformation processes and the behaviour of major and trace elements during l...

Full description

Saved in:
Bibliographic Details
Published in:Acta geologica Sinica (Beijing) 2015-04, Vol.89 (2), p.402-417
Main Authors: Lan, ZHANG, Jingsui, YANG, ROBINSON, Paul T., Fahui, XIONG, Yanhong, CHEN, Shengmin, LAI, Mei, CHEN
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Listwanite from the Luobusa ophiolite, Tibet, forms a narrow, discontinuous band along the eastern part of the southern boundary fault. We undertook a detailed petrographic and geochemical study to understand the mineral transformation processes and the behaviour of major and trace elements during listwanite formation. Three alteration zones characterized by distinct mineral components and texture are recognized and, in order of increasing degree of alteration, these are: zonem is rich in serpentine minerals; zonen is rich in talc and carbonates; and zone_Ⅰ is mainly composed of carbonates and quartz. Geochemical data for the three alteration zones show significant modification of some major and trace elements in the protolith, although some oxides show linear correlations with MgO. Gold mineralization is recognized in the Luobusa listwanite and may signify an important target for future mineral exploration. Gold enrichment occurs in both zone_Ⅰ and zone_Ⅱ and is up to 0.91 g/t in one sample from zonei. We show that CO_2-rich hydrothermal fluids can modify both the occurrence and composition of chromite grains, indicating some degree of chromite mobility. Low-Cr anhedral grains are more easily altered than high-Cr varieties. The compositions of chromite and olivine grains in the listwanite suggest a dunite protolith.
ISSN:1000-9515
1755-6724
DOI:10.1111/1755-6724.12438