Loading…

In Situ Stress Measurements in the Lhasa Terrane, Tibetan Plateau, China

the India and Eurasia plates. Knowledge of the stress state is critical to evaluate the crustal stability and the design of underground excavations. Because of the limitations imposed by natural conditions, little research has been performed on the present crustal in situ stress in the Tibetan Plate...

Full description

Saved in:
Bibliographic Details
Published in:Acta geologica Sinica (Beijing) 2016-12, Vol.90 (6), p.2022-2035
Main Authors: MENG, Wen, GUO, Changbao, ZHANG, Yongshuang, DU, Yuben, ZHANG, Min, BAO, Linhai, ZHANG, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:the India and Eurasia plates. Knowledge of the stress state is critical to evaluate the crustal stability and the design of underground excavations. Because of the limitations imposed by natural conditions, little research has been performed on the present crustal in situ stress in the Tibetan Plateau, and further study is imperative. In this study, hydraulic fracturing measurements were conducted in Nyching County (LZX) and Lang County (LX), Lhasa terrane to characterize the shallow crustal stress state. The results indicate that the stress state in the LZX borehole is markedly different from that in the LX borehole, in both magnitude and orientation. At the same measurement depths, the magnitudes of horizontal principal stresses in the LX borehole are 1.5–3.0 times larger than those in the LZX borehole. The stress regime in the LX borehole favors reverse faulting characterized by SH〉Sh〉Sv, where SH, Sh, and Sv are maximum horizontal, minimum horizontal, and vertical principal stresses, respectively. The SH and Sh values are approximately three and two times greater than Sv. Fracture impression results reveal that SH in the LX borehole are predominantly N–S, while in the LZX borehole the maximum horizontal principal stress is mainly in the NNE-direction. The heterogeneity of the regional stress state might be a result of the population and distribution of local structures and seismic activities. The stress state in the LX borehole has exceeded the critical state of failure equilibrium, and there is an optimally orientated pre-existing fault near the borehole. It can be concluded that the optimally orientated fault is likely to be active when the stress has built up sufficiently to destroy the frictional equilibrium; it is suggested that research focus should be placed on this in future. The stress states in boreholes LZX and LX indicate uniformity of the regional stress field and diversity of the local stress fields resulting from the interactions among regional dynamic forces, tectonic stress field, and geological structures.
ISSN:1000-9515
1755-6724
DOI:10.1111/1755-6724.13019