Loading…
基于无损卡尔曼滤波的车载双雷达目标位置估计方法
在无人驾驶汽车的研究中,对于传感器探测到的目标进行状态估计是环境感知技术的关键问题之一。本文提出了一种基于无损卡尔曼滤波器的算法,根据所获得的经过标记的雷达数据对目标的位置状态进行预测和更新,从而估计无人驾驶车辆双雷达系统的目标位置。本文中的车载雷达系统由四线激光雷达和毫米波雷达组成,标定后的车辆坐标系为与地面平行的二维坐标系,在此系统和坐标系基础上,在实验场地采集真实雷达数据并进行仿真计算。实验证明,相较于单一传感器,雷达组合模型的测量误差得到有效降低,融合数据精度提高。而相较于目前最常用的扩展卡尔曼滤波算法,车辆行驶方向上的平均位置均方误差从6.15‰下降到4.83‰,与车前轮轴平行的方向...
Saved in:
Published in: | Guang Dian Gong Cheng = Opto-Electronic Engineering 2019-07, Vol.46 (7), p.180339-104 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | chi ; eng |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 104 |
container_issue | 7 |
container_start_page | 180339 |
container_title | Guang Dian Gong Cheng = Opto-Electronic Engineering |
container_volume | 46 |
creator | 向易 汪毅 张佳琛 蔡怀宇 陈晓冬 / Xiang Yi Wang, Yi Zhang Jiachen Cai Huaiyu Chen, Xiaodong |
description | 在无人驾驶汽车的研究中,对于传感器探测到的目标进行状态估计是环境感知技术的关键问题之一。本文提出了一种基于无损卡尔曼滤波器的算法,根据所获得的经过标记的雷达数据对目标的位置状态进行预测和更新,从而估计无人驾驶车辆双雷达系统的目标位置。本文中的车载雷达系统由四线激光雷达和毫米波雷达组成,标定后的车辆坐标系为与地面平行的二维坐标系,在此系统和坐标系基础上,在实验场地采集真实雷达数据并进行仿真计算。实验证明,相较于单一传感器,雷达组合模型的测量误差得到有效降低,融合数据精度提高。而相较于目前最常用的扩展卡尔曼滤波算法,车辆行驶方向上的平均位置均方误差从6.15‰下降到4.83‰,与车前轮轴平行的方向上,平均位置均方误差值从4.24‰下降到2.99‰,表明本文算法的目标位置估计更加精确,更接近实际值。此外,在同样的运行环境下,本文算法处理500组雷达数据的平均时间也从5.9 ms降低到了2.1 ms,证明其有更高的算法效率。 |
doi_str_mv | 10.12086/oee.2019.180339 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_gdgc201907010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>gdgc201907010</wanfj_id><sourcerecordid>gdgc201907010</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1280-e6b61f36bc2fdb4bd5fb53b44dd485694b8c5226a5d8a8e72451fcd69fb634733</originalsourceid><addsrcrecordid>eNpFj01LAlEYhe-iIDH37aPl2Hs_595liH2A0KagncydmStIqDlJfyBok7XpA5qFGtFSBBeROf4a5zr9iwyDOIuzeXgOB6EtDEVMQIrdZhgWCWBVxBIoVWsohwGowwGfbaBCFNUBgCjBlsmhctqbzCd39rlvu720O0hHDzae2q83O35dvFxnyXuWJOn97Xf8kc1mi3ho-zfzpLtIhvPpKBsO7NOnHT9uonXjnUdh4a_z6HS_fFI6dCrHB0elvYrTwkSCEwotsKFC-8QEmumAG82pZiwImORCMS19TojweCA9GbqEcWz8QCijBWUupXm0s_JeeQ3jNWrVerPTbiwXq7Wg5v-eBhcwLLntFddqNy86YXT5DxIiXaUUV5j-ANjIcaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287999591</pqid></control><display><type>article</type><title>基于无损卡尔曼滤波的车载双雷达目标位置估计方法</title><source>Publicly Available Content Database</source><creator>向易 ; 汪毅 ; 张佳琛 ; 蔡怀宇 ; 陈晓冬 / Xiang Yi ; Wang, Yi ; Zhang Jiachen ; Cai Huaiyu ; Chen, Xiaodong</creator><creatorcontrib>向易 ; 汪毅 ; 张佳琛 ; 蔡怀宇 ; 陈晓冬 / Xiang Yi ; Wang, Yi ; Zhang Jiachen ; Cai Huaiyu ; Chen, Xiaodong</creatorcontrib><description>在无人驾驶汽车的研究中,对于传感器探测到的目标进行状态估计是环境感知技术的关键问题之一。本文提出了一种基于无损卡尔曼滤波器的算法,根据所获得的经过标记的雷达数据对目标的位置状态进行预测和更新,从而估计无人驾驶车辆双雷达系统的目标位置。本文中的车载雷达系统由四线激光雷达和毫米波雷达组成,标定后的车辆坐标系为与地面平行的二维坐标系,在此系统和坐标系基础上,在实验场地采集真实雷达数据并进行仿真计算。实验证明,相较于单一传感器,雷达组合模型的测量误差得到有效降低,融合数据精度提高。而相较于目前最常用的扩展卡尔曼滤波算法,车辆行驶方向上的平均位置均方误差从6.15‰下降到4.83‰,与车前轮轴平行的方向上,平均位置均方误差值从4.24‰下降到2.99‰,表明本文算法的目标位置估计更加精确,更接近实际值。此外,在同样的运行环境下,本文算法处理500组雷达数据的平均时间也从5.9 ms降低到了2.1 ms,证明其有更高的算法效率。</description><identifier>ISSN: 1003-501X</identifier><identifier>DOI: 10.12086/oee.2019.180339</identifier><language>chi ; eng</language><publisher>Chengdu: Editorial Office of Opto-Electronic Advances</publisher><subject>Algorithms ; Automation ; Computer simulation ; Coordinates ; Engineering ; Error analysis ; Error detection ; Information technology ; Kalman filters ; Laboratories ; Lasers ; Mean square errors ; Millimeter waves ; Model accuracy ; Radar data ; Radar equipment ; Radar systems ; Sensors ; Shafts (machine elements) ; State estimation ; Target detection ; Unmanned vehicles</subject><ispartof>Guang Dian Gong Cheng = Opto-Electronic Engineering, 2019-07, Vol.46 (7), p.180339-104</ispartof><rights>2019. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.oejournal.org/Item/Term.html</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/gdgc/gdgc.jpg</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2287999591/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2287999591?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>向易</creatorcontrib><creatorcontrib>汪毅</creatorcontrib><creatorcontrib>张佳琛</creatorcontrib><creatorcontrib>蔡怀宇</creatorcontrib><creatorcontrib>陈晓冬 / Xiang Yi</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang Jiachen</creatorcontrib><creatorcontrib>Cai Huaiyu</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><title>基于无损卡尔曼滤波的车载双雷达目标位置估计方法</title><title>Guang Dian Gong Cheng = Opto-Electronic Engineering</title><description>在无人驾驶汽车的研究中,对于传感器探测到的目标进行状态估计是环境感知技术的关键问题之一。本文提出了一种基于无损卡尔曼滤波器的算法,根据所获得的经过标记的雷达数据对目标的位置状态进行预测和更新,从而估计无人驾驶车辆双雷达系统的目标位置。本文中的车载雷达系统由四线激光雷达和毫米波雷达组成,标定后的车辆坐标系为与地面平行的二维坐标系,在此系统和坐标系基础上,在实验场地采集真实雷达数据并进行仿真计算。实验证明,相较于单一传感器,雷达组合模型的测量误差得到有效降低,融合数据精度提高。而相较于目前最常用的扩展卡尔曼滤波算法,车辆行驶方向上的平均位置均方误差从6.15‰下降到4.83‰,与车前轮轴平行的方向上,平均位置均方误差值从4.24‰下降到2.99‰,表明本文算法的目标位置估计更加精确,更接近实际值。此外,在同样的运行环境下,本文算法处理500组雷达数据的平均时间也从5.9 ms降低到了2.1 ms,证明其有更高的算法效率。</description><subject>Algorithms</subject><subject>Automation</subject><subject>Computer simulation</subject><subject>Coordinates</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Information technology</subject><subject>Kalman filters</subject><subject>Laboratories</subject><subject>Lasers</subject><subject>Mean square errors</subject><subject>Millimeter waves</subject><subject>Model accuracy</subject><subject>Radar data</subject><subject>Radar equipment</subject><subject>Radar systems</subject><subject>Sensors</subject><subject>Shafts (machine elements)</subject><subject>State estimation</subject><subject>Target detection</subject><subject>Unmanned vehicles</subject><issn>1003-501X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFj01LAlEYhe-iIDH37aPl2Hs_595liH2A0KagncydmStIqDlJfyBok7XpA5qFGtFSBBeROf4a5zr9iwyDOIuzeXgOB6EtDEVMQIrdZhgWCWBVxBIoVWsohwGowwGfbaBCFNUBgCjBlsmhctqbzCd39rlvu720O0hHDzae2q83O35dvFxnyXuWJOn97Xf8kc1mi3ho-zfzpLtIhvPpKBsO7NOnHT9uonXjnUdh4a_z6HS_fFI6dCrHB0elvYrTwkSCEwotsKFC-8QEmumAG82pZiwImORCMS19TojweCA9GbqEcWz8QCijBWUupXm0s_JeeQ3jNWrVerPTbiwXq7Wg5v-eBhcwLLntFddqNy86YXT5DxIiXaUUV5j-ANjIcaw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>向易</creator><creator>汪毅</creator><creator>张佳琛</creator><creator>蔡怀宇</creator><creator>陈晓冬 / Xiang Yi</creator><creator>Wang, Yi</creator><creator>Zhang Jiachen</creator><creator>Cai Huaiyu</creator><creator>Chen, Xiaodong</creator><general>Editorial Office of Opto-Electronic Advances</general><general>天津大学光电信息技术教育部重点实验室,天津 300072</general><general>天津大学精密仪器与光电子工程学院,天津 300072</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190701</creationdate><title>基于无损卡尔曼滤波的车载双雷达目标位置估计方法</title><author>向易 ; 汪毅 ; 张佳琛 ; 蔡怀宇 ; 陈晓冬 / Xiang Yi ; Wang, Yi ; Zhang Jiachen ; Cai Huaiyu ; Chen, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1280-e6b61f36bc2fdb4bd5fb53b44dd485694b8c5226a5d8a8e72451fcd69fb634733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Computer simulation</topic><topic>Coordinates</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Information technology</topic><topic>Kalman filters</topic><topic>Laboratories</topic><topic>Lasers</topic><topic>Mean square errors</topic><topic>Millimeter waves</topic><topic>Model accuracy</topic><topic>Radar data</topic><topic>Radar equipment</topic><topic>Radar systems</topic><topic>Sensors</topic><topic>Shafts (machine elements)</topic><topic>State estimation</topic><topic>Target detection</topic><topic>Unmanned vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>向易</creatorcontrib><creatorcontrib>汪毅</creatorcontrib><creatorcontrib>张佳琛</creatorcontrib><creatorcontrib>蔡怀宇</creatorcontrib><creatorcontrib>陈晓冬 / Xiang Yi</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang Jiachen</creatorcontrib><creatorcontrib>Cai Huaiyu</creatorcontrib><creatorcontrib>Chen, Xiaodong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Guang Dian Gong Cheng = Opto-Electronic Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>向易</au><au>汪毅</au><au>张佳琛</au><au>蔡怀宇</au><au>陈晓冬 / Xiang Yi</au><au>Wang, Yi</au><au>Zhang Jiachen</au><au>Cai Huaiyu</au><au>Chen, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>基于无损卡尔曼滤波的车载双雷达目标位置估计方法</atitle><jtitle>Guang Dian Gong Cheng = Opto-Electronic Engineering</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>46</volume><issue>7</issue><spage>180339</spage><epage>104</epage><pages>180339-104</pages><issn>1003-501X</issn><abstract>在无人驾驶汽车的研究中,对于传感器探测到的目标进行状态估计是环境感知技术的关键问题之一。本文提出了一种基于无损卡尔曼滤波器的算法,根据所获得的经过标记的雷达数据对目标的位置状态进行预测和更新,从而估计无人驾驶车辆双雷达系统的目标位置。本文中的车载雷达系统由四线激光雷达和毫米波雷达组成,标定后的车辆坐标系为与地面平行的二维坐标系,在此系统和坐标系基础上,在实验场地采集真实雷达数据并进行仿真计算。实验证明,相较于单一传感器,雷达组合模型的测量误差得到有效降低,融合数据精度提高。而相较于目前最常用的扩展卡尔曼滤波算法,车辆行驶方向上的平均位置均方误差从6.15‰下降到4.83‰,与车前轮轴平行的方向上,平均位置均方误差值从4.24‰下降到2.99‰,表明本文算法的目标位置估计更加精确,更接近实际值。此外,在同样的运行环境下,本文算法处理500组雷达数据的平均时间也从5.9 ms降低到了2.1 ms,证明其有更高的算法效率。</abstract><cop>Chengdu</cop><pub>Editorial Office of Opto-Electronic Advances</pub><doi>10.12086/oee.2019.180339</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1003-501X |
ispartof | Guang Dian Gong Cheng = Opto-Electronic Engineering, 2019-07, Vol.46 (7), p.180339-104 |
issn | 1003-501X |
language | chi ; eng |
recordid | cdi_wanfang_journals_gdgc201907010 |
source | Publicly Available Content Database |
subjects | Algorithms Automation Computer simulation Coordinates Engineering Error analysis Error detection Information technology Kalman filters Laboratories Lasers Mean square errors Millimeter waves Model accuracy Radar data Radar equipment Radar systems Sensors Shafts (machine elements) State estimation Target detection Unmanned vehicles |
title | 基于无损卡尔曼滤波的车载双雷达目标位置估计方法 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E6%97%A0%E6%8D%9F%E5%8D%A1%E5%B0%94%E6%9B%BC%E6%BB%A4%E6%B3%A2%E7%9A%84%E8%BD%A6%E8%BD%BD%E5%8F%8C%E9%9B%B7%E8%BE%BE%E7%9B%AE%E6%A0%87%E4%BD%8D%E7%BD%AE%E4%BC%B0%E8%AE%A1%E6%96%B9%E6%B3%95&rft.jtitle=Guang%20Dian%20Gong%20Cheng%20=%20Opto-Electronic%20Engineering&rft.au=%E5%90%91%E6%98%93&rft.date=2019-07-01&rft.volume=46&rft.issue=7&rft.spage=180339&rft.epage=104&rft.pages=180339-104&rft.issn=1003-501X&rft_id=info:doi/10.12086/oee.2019.180339&rft_dat=%3Cwanfang_jour_proqu%3Egdgc201907010%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1280-e6b61f36bc2fdb4bd5fb53b44dd485694b8c5226a5d8a8e72451fcd69fb634733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2287999591&rft_id=info:pmid/&rft_wanfj_id=gdgc201907010&rfr_iscdi=true |