Loading…
Dopant-stimulated CuO Nanofibers for Electro-oxidation and Determination of Glucose
We described the preparation of copper oxide composite nanofibers doped with carbon nanotubes (CuO/C-NFs) or nickel oxide(CuO/NiO-NFs) by electrospinning for direct glucose determination. The interest in exploring practical CuO/C-NFs and CuO/NiO-NFs electrode materials for sensor application was fas...
Saved in:
Published in: | Chemical research in Chinese universities 2013-10, Vol.29 (5), p.861-867 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We described the preparation of copper oxide composite nanofibers doped with carbon nanotubes (CuO/C-NFs) or nickel oxide(CuO/NiO-NFs) by electrospinning for direct glucose determination. The interest in exploring practical CuO/C-NFs and CuO/NiO-NFs electrode materials for sensor application was fascinated by the possibility of promoting electron transfer for kinetically unfavorable glucose oxidation reactions at a lower overpo- tential and thus improving the selectivity of the electrode for glucose in electroanalysis. The morphologies of CuO/C-NFs and CuO/NiO-NFs were characterized by scanning electron microscopy(SEM) and X-ray powder diffraction(XRD). The electrocatalytic performances of glucose were evaluated in detail by cyclic voltammetry(CV) and chronoamperometry. Facile charge transport, enhanced current response(at a lower overpotential of +0.35 V), improved stability and selectivity, as well as excellent resistance towards electrode fouling were observed at CuO/ C-NFs electrode in direct glucose electroanalysis. These merits are attributed to the highly porous three-dimensional network film structure of CuO/C-NFs electrode materials and the potential synergic catalytic effect of CuO and carbon nanotubes in composite nanofibers. This study may provide a new insight into metal oxide-based composite nanofibers obtained via electrospinning for fabricating novel and high performance sensors and devices. |
---|---|
ISSN: | 1005-9040 2210-3171 |
DOI: | 10.1007/s40242-013-3103-x |