Loading…
Glacier mass balance and its impacts on streamflow in a typical inland river basin in the Tianshan Mountains, northwestern China
Glaciers are known as natural “solid reservoirs”, and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used in situ observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in...
Saved in:
Published in: | Journal of arid land 2022-04, Vol.14 (4), p.455-472 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glaciers are known as natural “solid reservoirs”, and they play a dual role between the composition of water resources and the river runoff regulation in arid and semi-arid areas of China. In this study, we used
in situ
observation data from Urumqi Glacier No. 1, Xinjiang Uygur Autonomous Region, in combination with meteorological data from stations and a digital elevation model, to develop a distributed degree-day model for glaciers in the Urumqi River Basin to simulate glacier mass balance processes and quantify their effect on streamflow during 1980–2020. The results indicate that the mass loss and the equilibrium line altitude (ELA) of glaciers in the last 41 years had an increasing trend, with the average mass balance and ELA being −0.85 (±0.32) m w.e./a (meter water-equivalent per year) and 4188 m a.s.l., respectively. The glacier mass loss has increased significantly during 1999–2020, mostly due to the increase in temperature and the extension of ablation season. During 1980–2011, the average annual glacier meltwater runoff in the Urumqi River Basin was 0.48×10
8
m
3
, accounting for 18.56% of the total streamflow. We found that the annual streamflow in different catchments in the Urumqi River Basin had a strong response to the changes in glacier mass balance, especially from July to August, and the glacier meltwater runoff increased significantly. In summary, it is quite possible that the results of this research can provide a reference for the study of glacier water resources in glacier-recharged basins in arid and semi-arid areas. |
---|---|
ISSN: | 1674-6767 2194-7783 |
DOI: | 10.1007/s40333-022-0012-1 |