Loading…
Product Quality Prediction by a Neural Soft-Sensor Based on MSA and PCA
A novel soft-sensor model which incorporates PCA (principal component analysis), RBF (Radial Basis Function) networks, and MSA (Multi-scale analysis), is proposed to infer the properties of manufactured products from real process variables. PCA is carried out to select the most relevant process feat...
Saved in:
Published in: | International journal of automation and computing 2006, Vol.3 (1), p.17-22 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel soft-sensor model which incorporates PCA (principal component analysis), RBF (Radial Basis Function) networks, and MSA (Multi-scale analysis), is proposed to infer the properties of manufactured products from real process variables. PCA is carried out to select the most relevant process features and to eliminate the correlations of input variables; multi-scale analysis is introduced to acquire much more information and to reduce uncertainty in the system; and RBF networks are used to characterize the nonlinearity of the process. A prediction of the melt index (MI), or quality of polypropylene produced in an actual industrial process, is taken as a case study. Research results show that the proposed method provides promising prediction reliability and accuracy. |
---|---|
ISSN: | 1476-8186 1751-8520 |
DOI: | 10.1007/s11633-006-0017-9 |