Loading…

Evaluation of D(d,n) 3 He reaction neutron source models for BNCT irradiation system design

A mathematical method was developed to calculate the yield, energy spectrum and angular distribution of neutrons from D(d,n) 3 He (D-D) reaction in a thick deuterium-titanium target for incident deuterons in energies lower than 1.0MeV. The data of energy spectrum and angular distribution were applie...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear science and techniques 2007-12, Vol.18 (6), p.330-335
Main Authors: Ze'en, YAO, Peng, LUO, KOBAYASHI, Tooru, BENGUA, Gerard
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A mathematical method was developed to calculate the yield, energy spectrum and angular distribution of neutrons from D(d,n) 3 He (D-D) reaction in a thick deuterium-titanium target for incident deuterons in energies lower than 1.0MeV. The data of energy spectrum and angular distribution were applied to set up the neutron source model for the beam-shaping-assembly (BSA) design of Boron-Neutron-Capture-Therapy (BNCT) using MCNP-4C code. Three cases of D-D neutron source corresponding to incident deuteron energy of 1000, 400 and 150 keV were investigated. The neutron beam characteristics were compared with the model of a 2.45 MeV mono-energetic and isotropic neutron source using an example BSA designed for BNCT irradiation. The results show significant differences in the neutron beam characteristics, particularly the fast neutron component and fast neutron dose in air, between the non-isotropic neutron source model and the 2.5 MeV mono-energetic and isotropic neutron source model.
ISSN:1001-8042
2210-3147
DOI:10.1016/S1001-8042(08)60003-2