Loading…

Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera

With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sou...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear science and techniques 2020-09, Vol.31 (9), p.82-89, Article 92
Main Authors: Shen, Xiao-Lei, Gong, Pin, Tang, Xiao-Bin, Zhang, Rui, Ma, Jin-Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3
cites cdi_FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3
container_end_page 89
container_issue 9
container_start_page 82
container_title Nuclear science and techniques
container_volume 31
creator Shen, Xiao-Lei
Gong, Pin
Tang, Xiao-Bin
Zhang, Rui
Ma, Jin-Chao
description With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources. The coded array is a major component of a coded aperture gamma camera, and it affects the key performance parameters of the camera. Currently, commonly used coded arrays such as uniformly redundant arrays (URAs) and modified uniformly redundant arrays (MURAs) have prime numbers of rows or columns and may lead to wastage of detector pixels. A 16 × 16 coded array was designed on the basis of an existing 16 × 16 multi-pixel position-sensitive cadmium zinc telluride detector. The digital signal-to-noise (SNR) ratio of the point spread function at the center of the array is 25.67. Furthermore, Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed. With the same angular resolution, the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA. Simulations (Am-241, Co-57, Ir-192, Cs-137) and experiments (Co-57) are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA. The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA. However, as the photon energy increases, the gap becomes almost negligible.
doi_str_mv 10.1007/s41365-020-00796-5
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hjs_e202009008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hjs_e202009008</wanfj_id><sourcerecordid>hjs_e202009008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkye2AL-iX8yoqr8SJVYysKA5dg3SasmqexUwMbKE_BAvAlPgiFIbCz36h6dc670IXRKyTklRF3EnHIpMsJIls5CZmIPTRijJOM0V_toklw00yRnh-goxjUheS5FMUGP8871ftXVuIWh6X3ErR1c8y0MDWAqP1_fPt7ToBJvV8-wwbOHJfYwgBv6gPsKW5wKwGO7hTDsAuDatm0SbQvBHqODym4inPzuKbq_mi9nN9ni7vp2drnIHONKZ9oSWQjPeTq4rMrC5Ro8YcoKEKziXnslrCi1tSVUOS0Z04qWyknrSlDAp-hs7H2yXWW72qz7XejSR9OsowGWwJCCEJ2MbDS60McYoDLbsGpteDGUmG-UZkRpUsL8oDQihfgYisnc1RD-6v9JfQHyeXgx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera</title><source>Springer Nature</source><creator>Shen, Xiao-Lei ; Gong, Pin ; Tang, Xiao-Bin ; Zhang, Rui ; Ma, Jin-Chao</creator><creatorcontrib>Shen, Xiao-Lei ; Gong, Pin ; Tang, Xiao-Bin ; Zhang, Rui ; Ma, Jin-Chao</creatorcontrib><description>With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources. The coded array is a major component of a coded aperture gamma camera, and it affects the key performance parameters of the camera. Currently, commonly used coded arrays such as uniformly redundant arrays (URAs) and modified uniformly redundant arrays (MURAs) have prime numbers of rows or columns and may lead to wastage of detector pixels. A 16 × 16 coded array was designed on the basis of an existing 16 × 16 multi-pixel position-sensitive cadmium zinc telluride detector. The digital signal-to-noise (SNR) ratio of the point spread function at the center of the array is 25.67. Furthermore, Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed. With the same angular resolution, the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA. Simulations (Am-241, Co-57, Ir-192, Cs-137) and experiments (Co-57) are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA. The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA. However, as the photon energy increases, the gap becomes almost negligible.</description><identifier>ISSN: 1001-8042</identifier><identifier>EISSN: 2210-3147</identifier><identifier>DOI: 10.1007/s41365-020-00796-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Energy ; Hadrons ; Heavy Ions ; Nuclear Energy ; Nuclear Physics</subject><ispartof>Nuclear science and techniques, 2020-09, Vol.31 (9), p.82-89, Article 92</ispartof><rights>China Science Publishing &amp; Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3</citedby><cites>FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3</cites><orcidid>0000-0003-3308-0468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hjs-e/hjs-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shen, Xiao-Lei</creatorcontrib><creatorcontrib>Gong, Pin</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Ma, Jin-Chao</creatorcontrib><title>Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera</title><title>Nuclear science and techniques</title><addtitle>NUCL SCI TECH</addtitle><description>With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources. The coded array is a major component of a coded aperture gamma camera, and it affects the key performance parameters of the camera. Currently, commonly used coded arrays such as uniformly redundant arrays (URAs) and modified uniformly redundant arrays (MURAs) have prime numbers of rows or columns and may lead to wastage of detector pixels. A 16 × 16 coded array was designed on the basis of an existing 16 × 16 multi-pixel position-sensitive cadmium zinc telluride detector. The digital signal-to-noise (SNR) ratio of the point spread function at the center of the array is 25.67. Furthermore, Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed. With the same angular resolution, the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA. Simulations (Am-241, Co-57, Ir-192, Cs-137) and experiments (Co-57) are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA. The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA. However, as the photon energy increases, the gap becomes almost negligible.</description><subject>Energy</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><issn>1001-8042</issn><issn>2210-3147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkye2AL-iX8yoqr8SJVYysKA5dg3SasmqexUwMbKE_BAvAlPgiFIbCz36h6dc670IXRKyTklRF3EnHIpMsJIls5CZmIPTRijJOM0V_toklw00yRnh-goxjUheS5FMUGP8871ftXVuIWh6X3ErR1c8y0MDWAqP1_fPt7ToBJvV8-wwbOHJfYwgBv6gPsKW5wKwGO7hTDsAuDatm0SbQvBHqODym4inPzuKbq_mi9nN9ni7vp2drnIHONKZ9oSWQjPeTq4rMrC5Ro8YcoKEKziXnslrCi1tSVUOS0Z04qWyknrSlDAp-hs7H2yXWW72qz7XejSR9OsowGWwJCCEJ2MbDS60McYoDLbsGpteDGUmG-UZkRpUsL8oDQihfgYisnc1RD-6v9JfQHyeXgx</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Shen, Xiao-Lei</creator><creator>Gong, Pin</creator><creator>Tang, Xiao-Bin</creator><creator>Zhang, Rui</creator><creator>Ma, Jin-Chao</creator><general>Springer Singapore</general><general>Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China</general><general>Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China%Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0003-3308-0468</orcidid></search><sort><creationdate>20200901</creationdate><title>Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera</title><author>Shen, Xiao-Lei ; Gong, Pin ; Tang, Xiao-Bin ; Zhang, Rui ; Ma, Jin-Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Xiao-Lei</creatorcontrib><creatorcontrib>Gong, Pin</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Ma, Jin-Chao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Nuclear science and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Xiao-Lei</au><au>Gong, Pin</au><au>Tang, Xiao-Bin</au><au>Zhang, Rui</au><au>Ma, Jin-Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera</atitle><jtitle>Nuclear science and techniques</jtitle><stitle>NUCL SCI TECH</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>31</volume><issue>9</issue><spage>82</spage><epage>89</epage><pages>82-89</pages><artnum>92</artnum><issn>1001-8042</issn><eissn>2210-3147</eissn><abstract>With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources. The coded array is a major component of a coded aperture gamma camera, and it affects the key performance parameters of the camera. Currently, commonly used coded arrays such as uniformly redundant arrays (URAs) and modified uniformly redundant arrays (MURAs) have prime numbers of rows or columns and may lead to wastage of detector pixels. A 16 × 16 coded array was designed on the basis of an existing 16 × 16 multi-pixel position-sensitive cadmium zinc telluride detector. The digital signal-to-noise (SNR) ratio of the point spread function at the center of the array is 25.67. Furthermore, Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed. With the same angular resolution, the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA. Simulations (Am-241, Co-57, Ir-192, Cs-137) and experiments (Co-57) are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA. The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA. However, as the photon energy increases, the gap becomes almost negligible.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41365-020-00796-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3308-0468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-8042
ispartof Nuclear science and techniques, 2020-09, Vol.31 (9), p.82-89, Article 92
issn 1001-8042
2210-3147
language eng
recordid cdi_wanfang_journals_hjs_e202009008
source Springer Nature
subjects Energy
Hadrons
Heavy Ions
Nuclear Energy
Nuclear Physics
title Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20methods%20matching%20the%2016%E2%80%89%C3%97%E2%80%8916%20pixel%20CZT%20detector%20of%20a%20coded%20aperture%20gamma%20camera&rft.jtitle=Nuclear%20science%20and%20techniques&rft.au=Shen,%20Xiao-Lei&rft.date=2020-09-01&rft.volume=31&rft.issue=9&rft.spage=82&rft.epage=89&rft.pages=82-89&rft.artnum=92&rft.issn=1001-8042&rft.eissn=2210-3147&rft_id=info:doi/10.1007/s41365-020-00796-5&rft_dat=%3Cwanfang_jour_cross%3Ehjs_e202009008%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hjs_e202009008&rfr_iscdi=true