Loading…
Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera
With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sou...
Saved in:
Published in: | Nuclear science and techniques 2020-09, Vol.31 (9), p.82-89, Article 92 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3 |
container_end_page | 89 |
container_issue | 9 |
container_start_page | 82 |
container_title | Nuclear science and techniques |
container_volume | 31 |
creator | Shen, Xiao-Lei Gong, Pin Tang, Xiao-Bin Zhang, Rui Ma, Jin-Chao |
description | With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources. The coded array is a major component of a coded aperture gamma camera, and it affects the key performance parameters of the camera. Currently, commonly used coded arrays such as uniformly redundant arrays (URAs) and modified uniformly redundant arrays (MURAs) have prime numbers of rows or columns and may lead to wastage of detector pixels. A 16 × 16 coded array was designed on the basis of an existing 16 × 16 multi-pixel position-sensitive cadmium zinc telluride detector. The digital signal-to-noise (SNR) ratio of the point spread function at the center of the array is 25.67. Furthermore, Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed. With the same angular resolution, the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA. Simulations (Am-241, Co-57, Ir-192, Cs-137) and experiments (Co-57) are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA. The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA. However, as the photon energy increases, the gap becomes almost negligible. |
doi_str_mv | 10.1007/s41365-020-00796-5 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hjs_e202009008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hjs_e202009008</wanfj_id><sourcerecordid>hjs_e202009008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkye2AL-iX8yoqr8SJVYysKA5dg3SasmqexUwMbKE_BAvAlPgiFIbCz36h6dc670IXRKyTklRF3EnHIpMsJIls5CZmIPTRijJOM0V_toklw00yRnh-goxjUheS5FMUGP8871ftXVuIWh6X3ErR1c8y0MDWAqP1_fPt7ToBJvV8-wwbOHJfYwgBv6gPsKW5wKwGO7hTDsAuDatm0SbQvBHqODym4inPzuKbq_mi9nN9ni7vp2drnIHONKZ9oSWQjPeTq4rMrC5Ro8YcoKEKziXnslrCi1tSVUOS0Z04qWyknrSlDAp-hs7H2yXWW72qz7XejSR9OsowGWwJCCEJ2MbDS60McYoDLbsGpteDGUmG-UZkRpUsL8oDQihfgYisnc1RD-6v9JfQHyeXgx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera</title><source>Springer Nature</source><creator>Shen, Xiao-Lei ; Gong, Pin ; Tang, Xiao-Bin ; Zhang, Rui ; Ma, Jin-Chao</creator><creatorcontrib>Shen, Xiao-Lei ; Gong, Pin ; Tang, Xiao-Bin ; Zhang, Rui ; Ma, Jin-Chao</creatorcontrib><description>With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources. The coded array is a major component of a coded aperture gamma camera, and it affects the key performance parameters of the camera. Currently, commonly used coded arrays such as uniformly redundant arrays (URAs) and modified uniformly redundant arrays (MURAs) have prime numbers of rows or columns and may lead to wastage of detector pixels. A 16 × 16 coded array was designed on the basis of an existing 16 × 16 multi-pixel position-sensitive cadmium zinc telluride detector. The digital signal-to-noise (SNR) ratio of the point spread function at the center of the array is 25.67. Furthermore, Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed. With the same angular resolution, the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA. Simulations (Am-241, Co-57, Ir-192, Cs-137) and experiments (Co-57) are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA. The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA. However, as the photon energy increases, the gap becomes almost negligible.</description><identifier>ISSN: 1001-8042</identifier><identifier>EISSN: 2210-3147</identifier><identifier>DOI: 10.1007/s41365-020-00796-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Energy ; Hadrons ; Heavy Ions ; Nuclear Energy ; Nuclear Physics</subject><ispartof>Nuclear science and techniques, 2020-09, Vol.31 (9), p.82-89, Article 92</ispartof><rights>China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2020</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3</citedby><cites>FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3</cites><orcidid>0000-0003-3308-0468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hjs-e/hjs-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shen, Xiao-Lei</creatorcontrib><creatorcontrib>Gong, Pin</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Ma, Jin-Chao</creatorcontrib><title>Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera</title><title>Nuclear science and techniques</title><addtitle>NUCL SCI TECH</addtitle><description>With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources. The coded array is a major component of a coded aperture gamma camera, and it affects the key performance parameters of the camera. Currently, commonly used coded arrays such as uniformly redundant arrays (URAs) and modified uniformly redundant arrays (MURAs) have prime numbers of rows or columns and may lead to wastage of detector pixels. A 16 × 16 coded array was designed on the basis of an existing 16 × 16 multi-pixel position-sensitive cadmium zinc telluride detector. The digital signal-to-noise (SNR) ratio of the point spread function at the center of the array is 25.67. Furthermore, Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed. With the same angular resolution, the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA. Simulations (Am-241, Co-57, Ir-192, Cs-137) and experiments (Co-57) are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA. The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA. However, as the photon energy increases, the gap becomes almost negligible.</description><subject>Energy</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><issn>1001-8042</issn><issn>2210-3147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkye2AL-iX8yoqr8SJVYysKA5dg3SasmqexUwMbKE_BAvAlPgiFIbCz36h6dc670IXRKyTklRF3EnHIpMsJIls5CZmIPTRijJOM0V_toklw00yRnh-goxjUheS5FMUGP8871ftXVuIWh6X3ErR1c8y0MDWAqP1_fPt7ToBJvV8-wwbOHJfYwgBv6gPsKW5wKwGO7hTDsAuDatm0SbQvBHqODym4inPzuKbq_mi9nN9ni7vp2drnIHONKZ9oSWQjPeTq4rMrC5Ro8YcoKEKziXnslrCi1tSVUOS0Z04qWyknrSlDAp-hs7H2yXWW72qz7XejSR9OsowGWwJCCEJ2MbDS60McYoDLbsGpteDGUmG-UZkRpUsL8oDQihfgYisnc1RD-6v9JfQHyeXgx</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Shen, Xiao-Lei</creator><creator>Gong, Pin</creator><creator>Tang, Xiao-Bin</creator><creator>Zhang, Rui</creator><creator>Ma, Jin-Chao</creator><general>Springer Singapore</general><general>Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China</general><general>Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China%Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0003-3308-0468</orcidid></search><sort><creationdate>20200901</creationdate><title>Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera</title><author>Shen, Xiao-Lei ; Gong, Pin ; Tang, Xiao-Bin ; Zhang, Rui ; Ma, Jin-Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Xiao-Lei</creatorcontrib><creatorcontrib>Gong, Pin</creatorcontrib><creatorcontrib>Tang, Xiao-Bin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Ma, Jin-Chao</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Nuclear science and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Xiao-Lei</au><au>Gong, Pin</au><au>Tang, Xiao-Bin</au><au>Zhang, Rui</au><au>Ma, Jin-Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera</atitle><jtitle>Nuclear science and techniques</jtitle><stitle>NUCL SCI TECH</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>31</volume><issue>9</issue><spage>82</spage><epage>89</epage><pages>82-89</pages><artnum>92</artnum><issn>1001-8042</issn><eissn>2210-3147</eissn><abstract>With the advancements in nuclear energy, methods that can accurately obtain the spatial information of radioactive sources have become essential for nuclear energy safety. Coded aperture imaging technology is widely used because it provides two-dimensional distribution information of radioactive sources. The coded array is a major component of a coded aperture gamma camera, and it affects the key performance parameters of the camera. Currently, commonly used coded arrays such as uniformly redundant arrays (URAs) and modified uniformly redundant arrays (MURAs) have prime numbers of rows or columns and may lead to wastage of detector pixels. A 16 × 16 coded array was designed on the basis of an existing 16 × 16 multi-pixel position-sensitive cadmium zinc telluride detector. The digital signal-to-noise (SNR) ratio of the point spread function at the center of the array is 25.67. Furthermore, Monte Carlo camera models and experimental devices based on rank-13 MURA and rank-16 URA have been constructed. With the same angular resolution, the field size of view under rank-16 URA is 1.53 times that of under rank-13 MURA. Simulations (Am-241, Co-57, Ir-192, Cs-137) and experiments (Co-57) are conducted to compare the imaging performance between rank-16 URA and rank-13 MURA. The contrast-to-noise ratio of the reconstructed image of the rank-16 array is great and only slightly lower than that of rank-13 MURA. However, as the photon energy increases, the gap becomes almost negligible.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41365-020-00796-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3308-0468</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-8042 |
ispartof | Nuclear science and techniques, 2020-09, Vol.31 (9), p.82-89, Article 92 |
issn | 1001-8042 2210-3147 |
language | eng |
recordid | cdi_wanfang_journals_hjs_e202009008 |
source | Springer Nature |
subjects | Energy Hadrons Heavy Ions Nuclear Energy Nuclear Physics |
title | Encoding methods matching the 16 × 16 pixel CZT detector of a coded aperture gamma camera |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Encoding%20methods%20matching%20the%2016%E2%80%89%C3%97%E2%80%8916%20pixel%20CZT%20detector%20of%20a%20coded%20aperture%20gamma%20camera&rft.jtitle=Nuclear%20science%20and%20techniques&rft.au=Shen,%20Xiao-Lei&rft.date=2020-09-01&rft.volume=31&rft.issue=9&rft.spage=82&rft.epage=89&rft.pages=82-89&rft.artnum=92&rft.issn=1001-8042&rft.eissn=2210-3147&rft_id=info:doi/10.1007/s41365-020-00796-5&rft_dat=%3Cwanfang_jour_cross%3Ehjs_e202009008%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2378-8a0695d3337836fb9c48ed027a5e52f3d8d75a5b8aabef41b22871b7c6acbe7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hjs_e202009008&rfr_iscdi=true |