Loading…

Nonlinear modal electromechanical coupling factor for piezoelectric structures containing nonlinearities

Within the linear framework, the Modal Electromechanical Coupling Factor (MEMCF) is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures. It is also an important tool to guide the piezoelectric damping design of linear struc...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of aeronautics 2023-02, Vol.36 (2), p.100-110
Main Authors: WU, Yaguang, FAN, Yu, LI, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Within the linear framework, the Modal Electromechanical Coupling Factor (MEMCF) is an important indicator to quantify the dynamic conversion of mechanical energy and electrical energy of piezoelectric structures. It is also an important tool to guide the piezoelectric damping design of linear structures. Advanced aircraft often fly in maneuvers, and the variable working conditions induce drastic changes in the load level on structures. Geometric and contact nonlinearities of thin-walled structures and joint structures are often activated. To achieve a good vibration reduction effect covering all working conditions, one cannot directly use linear electromechanical coupling theory to instruct the piezoelectric damping design for nonlinear structures. Therefore, this paper defines the Nonlinear Modal Electromechanical Coupling Factor (NMEMCF) and proposes the corresponding numerical method for the first time to quantitatively evaluate the electromechanical coupling capability of nonlinear piezoelectric structures. Three candidate definitions of the NMEMCF are given, including two frequency definitions and one energy definition. The energy definition is the most promising one. It is not only applicable to both conservative and dissipative nonlinear structures but also compatible with the linear MEMCF. In addition, based on the energy formula, the NMEMCF can be obtained by only performing one nonlinear modal analysis in the open-circuit state. The analytical findings and the numerical tool are validated against two piezoelectric structures with different types of nonlinearities. A strong correlation among the NMEMCF, geometric parameters, and energy dissipation is observed. The results confirm that the proposed NMEMCF captures the physics of the electromechanical coupling phenomenon associated with nonlinear piezoelectric structures and can be used as an essential design indicator of piezoelectric damping, especially for variable working conditions.
ISSN:1000-9361
DOI:10.1016/j.cja.2022.06.020