Loading…

A method for satellite time series anomaly detection based on fast-DTW and improved-KNN

In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly de...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of aeronautics 2023-02, Vol.36 (2), p.149-159
Main Authors: CUI, Langfu, ZHANG, Qingzhen, SHI, Yan, YANG, Liman, WANG, Yixuan, WANG, Junle, BAI, Chenggang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523
cites cdi_FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523
container_end_page 159
container_issue 2
container_start_page 149
container_title Chinese journal of aeronautics
container_volume 36
creator CUI, Langfu
ZHANG, Qingzhen
SHI, Yan
YANG, Liman
WANG, Yixuan
WANG, Junle
BAI, Chenggang
description In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time.
doi_str_mv 10.1016/j.cja.2022.05.001
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hkxb_e202302012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hkxb_e202302012</wanfj_id><els_id>S1000936122000802</els_id><sourcerecordid>hkxb_e202302012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhj2ARCn8ADZvTAlnhziJmKryKaqyFHW0HPtMHfJR2aHQf4-rMjPdDe_znu4h5IpByoCJmybVjUo5cJ5CngKwEzJhAJBUmWBn5DyEBiCrCgYTsp7RDsfNYKgdPA1qxLZ1I9LRdUgDeoeBqn7oVLunBkfUoxt6WquAhsbFqjAm96t1zBjquq0fdmiS1-Xygpxa1Qa8_JtT8v74sJo_J4u3p5f5bJHorOBjIirLK60BhRJgeZlnykLNAZnhIDItuCkKZNyWqrbIRclvlQHLhGGFLnOeTcn1sfdb9Vb1H7IZvnwfL8rN508tMVrIgAM7JNkxqf0Qgkcrt951yu8lA3nwJhsZvcmDNwm5jN4ic3dkML6wc-hl0A57jcb5qEKawf1D_wKczXbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A method for satellite time series anomaly detection based on fast-DTW and improved-KNN</title><source>ScienceDirect</source><creator>CUI, Langfu ; ZHANG, Qingzhen ; SHI, Yan ; YANG, Liman ; WANG, Yixuan ; WANG, Junle ; BAI, Chenggang</creator><creatorcontrib>CUI, Langfu ; ZHANG, Qingzhen ; SHI, Yan ; YANG, Liman ; WANG, Yixuan ; WANG, Junle ; BAI, Chenggang</creatorcontrib><description>In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2022.05.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anomaly detection ; Fast-DTW ; KNN ; Over-sampling ; Satellite ; Time series</subject><ispartof>Chinese journal of aeronautics, 2023-02, Vol.36 (2), p.149-159</ispartof><rights>2022 Chinese Society of Aeronautics and Astronautics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523</citedby><cites>FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hkxb-e/hkxb-e.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1000936122000802$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>CUI, Langfu</creatorcontrib><creatorcontrib>ZHANG, Qingzhen</creatorcontrib><creatorcontrib>SHI, Yan</creatorcontrib><creatorcontrib>YANG, Liman</creatorcontrib><creatorcontrib>WANG, Yixuan</creatorcontrib><creatorcontrib>WANG, Junle</creatorcontrib><creatorcontrib>BAI, Chenggang</creatorcontrib><title>A method for satellite time series anomaly detection based on fast-DTW and improved-KNN</title><title>Chinese journal of aeronautics</title><description>In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time.</description><subject>Anomaly detection</subject><subject>Fast-DTW</subject><subject>KNN</subject><subject>Over-sampling</subject><subject>Satellite</subject><subject>Time series</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhj2ARCn8ADZvTAlnhziJmKryKaqyFHW0HPtMHfJR2aHQf4-rMjPdDe_znu4h5IpByoCJmybVjUo5cJ5CngKwEzJhAJBUmWBn5DyEBiCrCgYTsp7RDsfNYKgdPA1qxLZ1I9LRdUgDeoeBqn7oVLunBkfUoxt6WquAhsbFqjAm96t1zBjquq0fdmiS1-Xygpxa1Qa8_JtT8v74sJo_J4u3p5f5bJHorOBjIirLK60BhRJgeZlnykLNAZnhIDItuCkKZNyWqrbIRclvlQHLhGGFLnOeTcn1sfdb9Vb1H7IZvnwfL8rN508tMVrIgAM7JNkxqf0Qgkcrt951yu8lA3nwJhsZvcmDNwm5jN4ic3dkML6wc-hl0A57jcb5qEKawf1D_wKczXbA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>CUI, Langfu</creator><creator>ZHANG, Qingzhen</creator><creator>SHI, Yan</creator><creator>YANG, Liman</creator><creator>WANG, Yixuan</creator><creator>WANG, Junle</creator><creator>BAI, Chenggang</creator><general>Elsevier Ltd</general><general>School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230201</creationdate><title>A method for satellite time series anomaly detection based on fast-DTW and improved-KNN</title><author>CUI, Langfu ; ZHANG, Qingzhen ; SHI, Yan ; YANG, Liman ; WANG, Yixuan ; WANG, Junle ; BAI, Chenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomaly detection</topic><topic>Fast-DTW</topic><topic>KNN</topic><topic>Over-sampling</topic><topic>Satellite</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CUI, Langfu</creatorcontrib><creatorcontrib>ZHANG, Qingzhen</creatorcontrib><creatorcontrib>SHI, Yan</creatorcontrib><creatorcontrib>YANG, Liman</creatorcontrib><creatorcontrib>WANG, Yixuan</creatorcontrib><creatorcontrib>WANG, Junle</creatorcontrib><creatorcontrib>BAI, Chenggang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CUI, Langfu</au><au>ZHANG, Qingzhen</au><au>SHI, Yan</au><au>YANG, Liman</au><au>WANG, Yixuan</au><au>WANG, Junle</au><au>BAI, Chenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for satellite time series anomaly detection based on fast-DTW and improved-KNN</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>36</volume><issue>2</issue><spage>149</spage><epage>159</epage><pages>149-159</pages><issn>1000-9361</issn><abstract>In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2022.05.001</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9361
ispartof Chinese journal of aeronautics, 2023-02, Vol.36 (2), p.149-159
issn 1000-9361
language eng
recordid cdi_wanfang_journals_hkxb_e202302012
source ScienceDirect
subjects Anomaly detection
Fast-DTW
KNN
Over-sampling
Satellite
Time series
title A method for satellite time series anomaly detection based on fast-DTW and improved-KNN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20satellite%20time%20series%20anomaly%20detection%20based%20on%20fast-DTW%20and%20improved-KNN&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=CUI,%20Langfu&rft.date=2023-02-01&rft.volume=36&rft.issue=2&rft.spage=149&rft.epage=159&rft.pages=149-159&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2022.05.001&rft_dat=%3Cwanfang_jour_cross%3Ehkxb_e202302012%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hkxb_e202302012&rfr_iscdi=true