Loading…
A method for satellite time series anomaly detection based on fast-DTW and improved-KNN
In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly de...
Saved in:
Published in: | Chinese journal of aeronautics 2023-02, Vol.36 (2), p.149-159 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523 |
container_end_page | 159 |
container_issue | 2 |
container_start_page | 149 |
container_title | Chinese journal of aeronautics |
container_volume | 36 |
creator | CUI, Langfu ZHANG, Qingzhen SHI, Yan YANG, Liman WANG, Yixuan WANG, Junle BAI, Chenggang |
description | In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time. |
doi_str_mv | 10.1016/j.cja.2022.05.001 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_hkxb_e202302012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hkxb_e202302012</wanfj_id><els_id>S1000936122000802</els_id><sourcerecordid>hkxb_e202302012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhj2ARCn8ADZvTAlnhziJmKryKaqyFHW0HPtMHfJR2aHQf4-rMjPdDe_znu4h5IpByoCJmybVjUo5cJ5CngKwEzJhAJBUmWBn5DyEBiCrCgYTsp7RDsfNYKgdPA1qxLZ1I9LRdUgDeoeBqn7oVLunBkfUoxt6WquAhsbFqjAm96t1zBjquq0fdmiS1-Xygpxa1Qa8_JtT8v74sJo_J4u3p5f5bJHorOBjIirLK60BhRJgeZlnykLNAZnhIDItuCkKZNyWqrbIRclvlQHLhGGFLnOeTcn1sfdb9Vb1H7IZvnwfL8rN508tMVrIgAM7JNkxqf0Qgkcrt951yu8lA3nwJhsZvcmDNwm5jN4ic3dkML6wc-hl0A57jcb5qEKawf1D_wKczXbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A method for satellite time series anomaly detection based on fast-DTW and improved-KNN</title><source>ScienceDirect</source><creator>CUI, Langfu ; ZHANG, Qingzhen ; SHI, Yan ; YANG, Liman ; WANG, Yixuan ; WANG, Junle ; BAI, Chenggang</creator><creatorcontrib>CUI, Langfu ; ZHANG, Qingzhen ; SHI, Yan ; YANG, Liman ; WANG, Yixuan ; WANG, Junle ; BAI, Chenggang</creatorcontrib><description>In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time.</description><identifier>ISSN: 1000-9361</identifier><identifier>DOI: 10.1016/j.cja.2022.05.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anomaly detection ; Fast-DTW ; KNN ; Over-sampling ; Satellite ; Time series</subject><ispartof>Chinese journal of aeronautics, 2023-02, Vol.36 (2), p.149-159</ispartof><rights>2022 Chinese Society of Aeronautics and Astronautics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523</citedby><cites>FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hkxb-e/hkxb-e.jpg</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1000936122000802$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>CUI, Langfu</creatorcontrib><creatorcontrib>ZHANG, Qingzhen</creatorcontrib><creatorcontrib>SHI, Yan</creatorcontrib><creatorcontrib>YANG, Liman</creatorcontrib><creatorcontrib>WANG, Yixuan</creatorcontrib><creatorcontrib>WANG, Junle</creatorcontrib><creatorcontrib>BAI, Chenggang</creatorcontrib><title>A method for satellite time series anomaly detection based on fast-DTW and improved-KNN</title><title>Chinese journal of aeronautics</title><description>In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time.</description><subject>Anomaly detection</subject><subject>Fast-DTW</subject><subject>KNN</subject><subject>Over-sampling</subject><subject>Satellite</subject><subject>Time series</subject><issn>1000-9361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhj2ARCn8ADZvTAlnhziJmKryKaqyFHW0HPtMHfJR2aHQf4-rMjPdDe_znu4h5IpByoCJmybVjUo5cJ5CngKwEzJhAJBUmWBn5DyEBiCrCgYTsp7RDsfNYKgdPA1qxLZ1I9LRdUgDeoeBqn7oVLunBkfUoxt6WquAhsbFqjAm96t1zBjquq0fdmiS1-Xygpxa1Qa8_JtT8v74sJo_J4u3p5f5bJHorOBjIirLK60BhRJgeZlnykLNAZnhIDItuCkKZNyWqrbIRclvlQHLhGGFLnOeTcn1sfdb9Vb1H7IZvnwfL8rN508tMVrIgAM7JNkxqf0Qgkcrt951yu8lA3nwJhsZvcmDNwm5jN4ic3dkML6wc-hl0A57jcb5qEKawf1D_wKczXbA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>CUI, Langfu</creator><creator>ZHANG, Qingzhen</creator><creator>SHI, Yan</creator><creator>YANG, Liman</creator><creator>WANG, Yixuan</creator><creator>WANG, Junle</creator><creator>BAI, Chenggang</creator><general>Elsevier Ltd</general><general>School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230201</creationdate><title>A method for satellite time series anomaly detection based on fast-DTW and improved-KNN</title><author>CUI, Langfu ; ZHANG, Qingzhen ; SHI, Yan ; YANG, Liman ; WANG, Yixuan ; WANG, Junle ; BAI, Chenggang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anomaly detection</topic><topic>Fast-DTW</topic><topic>KNN</topic><topic>Over-sampling</topic><topic>Satellite</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CUI, Langfu</creatorcontrib><creatorcontrib>ZHANG, Qingzhen</creatorcontrib><creatorcontrib>SHI, Yan</creatorcontrib><creatorcontrib>YANG, Liman</creatorcontrib><creatorcontrib>WANG, Yixuan</creatorcontrib><creatorcontrib>WANG, Junle</creatorcontrib><creatorcontrib>BAI, Chenggang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CUI, Langfu</au><au>ZHANG, Qingzhen</au><au>SHI, Yan</au><au>YANG, Liman</au><au>WANG, Yixuan</au><au>WANG, Junle</au><au>BAI, Chenggang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for satellite time series anomaly detection based on fast-DTW and improved-KNN</atitle><jtitle>Chinese journal of aeronautics</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>36</volume><issue>2</issue><spage>149</spage><epage>159</epage><pages>149-159</pages><issn>1000-9361</issn><abstract>In satellite anomaly detection, there are some problems such as unbalanced sample distribution, fewer fault samples, and unobvious anomaly characteristics. These problems cause the extisted anomaly detection methods are difficult to train accurate classification model, and the accuracy of anomaly detection is hard to improve. At the same time, the monitoring data of satellite has high dimension and is difficult to extract effective features. Based on the DTW over-sampling method, this paper realizes the over-sampling of fault samples in satellite time series, and constructs a distributed and balanced time series data set. The Fast-DTW method is applied to calculate the distance between different time series, which can improve the speed of similarity calculation. KNN (K-Nearest Neighbor) method is applied for classification and the best classification result is obtained by search the optimal hyper-parameters k. The results show that the proposed method has high anomaly detection accuracy and consumes short calculation time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cja.2022.05.001</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9361 |
ispartof | Chinese journal of aeronautics, 2023-02, Vol.36 (2), p.149-159 |
issn | 1000-9361 |
language | eng |
recordid | cdi_wanfang_journals_hkxb_e202302012 |
source | ScienceDirect |
subjects | Anomaly detection Fast-DTW KNN Over-sampling Satellite Time series |
title | A method for satellite time series anomaly detection based on fast-DTW and improved-KNN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20satellite%20time%20series%20anomaly%20detection%20based%20on%20fast-DTW%20and%20improved-KNN&rft.jtitle=Chinese%20journal%20of%20aeronautics&rft.au=CUI,%20Langfu&rft.date=2023-02-01&rft.volume=36&rft.issue=2&rft.spage=149&rft.epage=159&rft.pages=149-159&rft.issn=1000-9361&rft_id=info:doi/10.1016/j.cja.2022.05.001&rft_dat=%3Cwanfang_jour_cross%3Ehkxb_e202302012%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-69f29cc0e6a60f2853af0b20e1d2063c62d77e12f8abfe26824ad0f16d17c8523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=hkxb_e202302012&rfr_iscdi=true |