Loading…

The vertical structure of the atmospheric boundary layer over the central Arctic Ocean

The tropopause height and the atmospheric boundarylayer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by Chinas fourth arctic scientific expedition team ove...

Full description

Saved in:
Bibliographic Details
Published in:Acta oceanologica Sinica 2013-10, Vol.32 (10), p.34-40
Main Authors: Bian, Lingen, Ma, Yongfeng, Lu, Changgui, Lin, Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-5394747af9960621a255bff4a6006784697888a37126f456c0737cb0494949653
cites cdi_FETCH-LOGICAL-c435t-5394747af9960621a255bff4a6006784697888a37126f456c0737cb0494949653
container_end_page 40
container_issue 10
container_start_page 34
container_title Acta oceanologica Sinica
container_volume 32
creator Bian, Lingen
Ma, Yongfeng
Lu, Changgui
Lin, Xiang
description The tropopause height and the atmospheric boundarylayer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by Chinas fourth arctic scientific expedition team over the central Arctic Ocean (86°-88°N, 144°-170°W) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between -52.2 and -54.10C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low- and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (800-85° N). The PBL height and the inversion layer thickness are much lower than those at 870-88° N, but the inversion temperature is more intense, meaning a strong ice- atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.
doi_str_mv 10.1007/s13131-013-0363-8
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hyxb_e201310006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47605803</cqvip_id><wanfj_id>hyxb_e201310006</wanfj_id><sourcerecordid>hyxb_e201310006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-5394747af9960621a255bff4a6006784697888a37126f456c0737cb0494949653</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxa2qSE1DP0BvW3Ggly3j__YRoRaQkLgA4mY5rjcJ2tjB3m2bb8-ERQj1gOfgw_zee6MZQr5S-EEB9EmlHKsFylvgirfmA5lRo2xLwdqPZAZM8laCvP9EPtf6ACCp5HpG7m5WsfkTy7AOvm_qUMYwjCU2uWsG7Phhk-t2Fcs6NIs8pt--7Jre72JpMqqemRDTUFB8WgK6NNch-nRIDjrf1_jl5Z-T218_b84u2qvr88uz06s2CC6HVnIrtNC-s1aBYtQzKRddJ7wCUNoIZbUxxnNNmeqEVAE012EBwu5LST4nx5PvX586n5buIY8lYaJb7f4tXGS4ENwPKCS_T-S25Mcx1sFt1jXEvvcp5rE6KqSRnKIrokf_oa-uzDJ0k0bp9ygq9o9xxZCiExVKrrXEzm3LeoNbdBTc_nJuupzDQd3-cs6ghk2aimxaxvLG-R3Rt5egVU7LR9S9JgmtcGTg_Am636JZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444442362</pqid></control><display><type>article</type><title>The vertical structure of the atmospheric boundary layer over the central Arctic Ocean</title><source>Springer Nature</source><creator>Bian, Lingen ; Ma, Yongfeng ; Lu, Changgui ; Lin, Xiang</creator><creatorcontrib>Bian, Lingen ; Ma, Yongfeng ; Lu, Changgui ; Lin, Xiang</creatorcontrib><description>The tropopause height and the atmospheric boundarylayer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by Chinas fourth arctic scientific expedition team over the central Arctic Ocean (86°-88°N, 144°-170°W) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between -52.2 and -54.10C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low- and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (800-85° N). The PBL height and the inversion layer thickness are much lower than those at 870-88° N, but the inversion temperature is more intense, meaning a strong ice- atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-013-0363-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atmospheric boundary layer ; Boundary layers ; Climate change ; Climatology ; Correlation coefficient ; Correlation coefficients ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Expeditions ; Floating ice ; Global positioning systems ; GPS ; Height ; Marine ; Marine &amp; Freshwater Sciences ; North Pole ; Oceanography ; Radiosondes ; Sea ice ; Temperature inversion ; Temperature inversions ; Thickness ; Trends ; Tropopause ; Troposphere ; Vertical profiles ; Wind ; Wind direction ; Wind profiles ; 全球定位系统 ; 北冰洋 ; 北极科学考察 ; 垂直结构 ; 大气边界层 ; 对流层顶 ; 无线电探空仪 ; 边界层高度</subject><ispartof>Acta oceanologica Sinica, 2013-10, Vol.32 (10), p.34-40</ispartof><rights>The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2013</rights><rights>The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg 2013.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-5394747af9960621a255bff4a6006784697888a37126f456c0737cb0494949653</citedby><cites>FETCH-LOGICAL-c435t-5394747af9960621a255bff4a6006784697888a37126f456c0737cb0494949653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86790X/86790X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bian, Lingen</creatorcontrib><creatorcontrib>Ma, Yongfeng</creatorcontrib><creatorcontrib>Lu, Changgui</creatorcontrib><creatorcontrib>Lin, Xiang</creatorcontrib><title>The vertical structure of the atmospheric boundary layer over the central Arctic Ocean</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><addtitle>Acta Oceanologica Sinica</addtitle><description>The tropopause height and the atmospheric boundarylayer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by Chinas fourth arctic scientific expedition team over the central Arctic Ocean (86°-88°N, 144°-170°W) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between -52.2 and -54.10C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low- and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (800-85° N). The PBL height and the inversion layer thickness are much lower than those at 870-88° N, but the inversion temperature is more intense, meaning a strong ice- atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.</description><subject>Atmospheric boundary layer</subject><subject>Boundary layers</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Expeditions</subject><subject>Floating ice</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Height</subject><subject>Marine</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>North Pole</subject><subject>Oceanography</subject><subject>Radiosondes</subject><subject>Sea ice</subject><subject>Temperature inversion</subject><subject>Temperature inversions</subject><subject>Thickness</subject><subject>Trends</subject><subject>Tropopause</subject><subject>Troposphere</subject><subject>Vertical profiles</subject><subject>Wind</subject><subject>Wind direction</subject><subject>Wind profiles</subject><subject>全球定位系统</subject><subject>北冰洋</subject><subject>北极科学考察</subject><subject>垂直结构</subject><subject>大气边界层</subject><subject>对流层顶</subject><subject>无线电探空仪</subject><subject>边界层高度</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxa2qSE1DP0BvW3Ggly3j__YRoRaQkLgA4mY5rjcJ2tjB3m2bb8-ERQj1gOfgw_zee6MZQr5S-EEB9EmlHKsFylvgirfmA5lRo2xLwdqPZAZM8laCvP9EPtf6ACCp5HpG7m5WsfkTy7AOvm_qUMYwjCU2uWsG7Phhk-t2Fcs6NIs8pt--7Jre72JpMqqemRDTUFB8WgK6NNch-nRIDjrf1_jl5Z-T218_b84u2qvr88uz06s2CC6HVnIrtNC-s1aBYtQzKRddJ7wCUNoIZbUxxnNNmeqEVAE012EBwu5LST4nx5PvX586n5buIY8lYaJb7f4tXGS4ENwPKCS_T-S25Mcx1sFt1jXEvvcp5rE6KqSRnKIrokf_oa-uzDJ0k0bp9ygq9o9xxZCiExVKrrXEzm3LeoNbdBTc_nJuupzDQd3-cs6ghk2aimxaxvLG-R3Rt5egVU7LR9S9JgmtcGTg_Am636JZ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Bian, Lingen</creator><creator>Ma, Yongfeng</creator><creator>Lu, Changgui</creator><creator>Lin, Xiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Chinese Academy of Meteorological Sciences, Beijing 100081, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>BBNVY</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20131001</creationdate><title>The vertical structure of the atmospheric boundary layer over the central Arctic Ocean</title><author>Bian, Lingen ; Ma, Yongfeng ; Lu, Changgui ; Lin, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-5394747af9960621a255bff4a6006784697888a37126f456c0737cb0494949653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atmospheric boundary layer</topic><topic>Boundary layers</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Expeditions</topic><topic>Floating ice</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Height</topic><topic>Marine</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>North Pole</topic><topic>Oceanography</topic><topic>Radiosondes</topic><topic>Sea ice</topic><topic>Temperature inversion</topic><topic>Temperature inversions</topic><topic>Thickness</topic><topic>Trends</topic><topic>Tropopause</topic><topic>Troposphere</topic><topic>Vertical profiles</topic><topic>Wind</topic><topic>Wind direction</topic><topic>Wind profiles</topic><topic>全球定位系统</topic><topic>北冰洋</topic><topic>北极科学考察</topic><topic>垂直结构</topic><topic>大气边界层</topic><topic>对流层顶</topic><topic>无线电探空仪</topic><topic>边界层高度</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bian, Lingen</creatorcontrib><creatorcontrib>Ma, Yongfeng</creatorcontrib><creatorcontrib>Lu, Changgui</creatorcontrib><creatorcontrib>Lin, Xiang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Biological Science Collection</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bian, Lingen</au><au>Ma, Yongfeng</au><au>Lu, Changgui</au><au>Lin, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The vertical structure of the atmospheric boundary layer over the central Arctic Ocean</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><addtitle>Acta Oceanologica Sinica</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>32</volume><issue>10</issue><spage>34</spage><epage>40</epage><pages>34-40</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>The tropopause height and the atmospheric boundarylayer (PBL) height as well as the variation of inversion layer above the floating ice surface are presented using GPS (global position system ) radiosonde sounding data and relevant data obtained by Chinas fourth arctic scientific expedition team over the central Arctic Ocean (86°-88°N, 144°-170°W) during the summer of 2010. The tropopause height is from 9.8 to 10.5 km, with a temperature range between -52.2 and -54.10C in the central Arctic Ocean. Two zones of maximum wind (over 12 m/s) are found in the wind profile, namely, low- and upper-level jets, located in the middle troposphere and the tropopause, respectively. The wind direction has a marked variation point in the two jets from the southeast to the southwest. The average PBL height determined by two methods is 341 and 453 m respectively. These two methods can both be used when the inversion layer is very low, but the results vary significantly when the inversion layer is very high. A significant logarithmic relationship exists between the PBL height and the inversion intensity, with a correlation coefficient of 0.66, indicating that the more intense the temperature inversion is, the lower the boundary layer will be. The observation results obviously differ from those of the third arctic expedition zone (800-85° N). The PBL height and the inversion layer thickness are much lower than those at 870-88° N, but the inversion temperature is more intense, meaning a strong ice- atmosphere interaction in the sea near the North Pole. The PBL structure is related to the weather system and the sea ice concentration, which affects the observation station.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13131-013-0363-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-505X
ispartof Acta oceanologica Sinica, 2013-10, Vol.32 (10), p.34-40
issn 0253-505X
1869-1099
language eng
recordid cdi_wanfang_journals_hyxb_e201310006
source Springer Nature
subjects Atmospheric boundary layer
Boundary layers
Climate change
Climatology
Correlation coefficient
Correlation coefficients
Earth and Environmental Science
Earth Sciences
Ecology
Engineering Fluid Dynamics
Environmental Chemistry
Expeditions
Floating ice
Global positioning systems
GPS
Height
Marine
Marine & Freshwater Sciences
North Pole
Oceanography
Radiosondes
Sea ice
Temperature inversion
Temperature inversions
Thickness
Trends
Tropopause
Troposphere
Vertical profiles
Wind
Wind direction
Wind profiles
全球定位系统
北冰洋
北极科学考察
垂直结构
大气边界层
对流层顶
无线电探空仪
边界层高度
title The vertical structure of the atmospheric boundary layer over the central Arctic Ocean
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20vertical%20structure%20of%20the%20atmospheric%20boundary%20layer%20over%20the%20central%20Arctic%20Ocean&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Bian,%20Lingen&rft.date=2013-10-01&rft.volume=32&rft.issue=10&rft.spage=34&rft.epage=40&rft.pages=34-40&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-013-0363-8&rft_dat=%3Cwanfang_jour_proqu%3Ehyxb_e201310006%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-5394747af9960621a255bff4a6006784697888a37126f456c0737cb0494949653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1444442362&rft_id=info:pmid/&rft_cqvip_id=47605803&rft_wanfj_id=hyxb_e201310006&rfr_iscdi=true