Loading…

The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone

Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove- Spartina alterniflora ecozone in the Zhangjiang River Estuary,...

Full description

Saved in:
Bibliographic Details
Published in:Acta oceanologica Sinica 2023-08, Vol.42 (8), p.61-76
Main Authors: Jiang, Weizhen, Wang, Guizhi, Li, Qing, Dutta, Manab Kumar, Jin, Shilei, Dai, Guiyuan, Xu, Yi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3
cites cdi_FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3
container_end_page 76
container_issue 8
container_start_page 61
container_title Acta oceanologica Sinica
container_volume 42
creator Jiang, Weizhen
Wang, Guizhi
Li, Qing
Dutta, Manab Kumar
Jin, Shilei
Dai, Guiyuan
Xu, Yi
description Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove- Spartina alterniflora ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using 222 Rn and 228 Ra as tracers to be (2.15 ± 0.63) mol/(m 2 ·d) for dissolved inorganic carbon (DIC) and (-0.008 ± 0.07) mol/(m 2 ·d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m 2 ·d) for DIC and (-0.15 ± 0.007) mol/(m 2 ·d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m 2 ·d) for DIC and (0.02 ± 0.09) mol/(m 2 ·d) for DOC in the dry season in the S. alterniflora -dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands.
doi_str_mv 10.1007/s13131-023-2234-2
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hyxb_e202308006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hyxb_e202308006</wanfj_id><sourcerecordid>hyxb_e202308006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3</originalsourceid><addsrcrecordid>eNp9kcFOGzEQhq0KpIaUB-BmqQdO287YXu_6iCKglZB6gErcLMc7JkGJndoJCTw9RluJE2gOMyN9_8xofsbOEH4gQPezoKzRgJCNEFI14gubYK9Ng2DMEZuAaGXTQnv_lZ2U8gjQYiu7CaO7BfHgtsRT4N7leYo8U9mttsv4wENOa75Jmfi-IpnTwS9cfCC-jNzxdS1zeiLu4sBvNy5XjeNuVcm4DKuUHSefXlKkb-w4uFWh0_95yv5eXd7NfjU3f65_zy5uGi87vW2c8aRQIxkVTBg66VANCoPSmhR0RLUj4wfo517PndY9DuQH1QlECcrJKTsf5-5dDPU6-5h2OdaNdvF8mFsS9T_QA-hKfh_JTU7_dlS276gwAjRqQPUp1fdKG9P3WCkcKZ9TKZmC3eTl2uVni2Df3LGjO7Zut2_uWFE1YtSUytaP5vfJH4teAbUhkWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920616014</pqid></control><display><type>article</type><title>The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone</title><source>Springer Nature</source><creator>Jiang, Weizhen ; Wang, Guizhi ; Li, Qing ; Dutta, Manab Kumar ; Jin, Shilei ; Dai, Guiyuan ; Xu, Yi</creator><creatorcontrib>Jiang, Weizhen ; Wang, Guizhi ; Li, Qing ; Dutta, Manab Kumar ; Jin, Shilei ; Dai, Guiyuan ; Xu, Yi</creatorcontrib><description>Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove- Spartina alterniflora ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using 222 Rn and 228 Ra as tracers to be (2.15 ± 0.63) mol/(m 2 ·d) for dissolved inorganic carbon (DIC) and (-0.008 ± 0.07) mol/(m 2 ·d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m 2 ·d) for DIC and (-0.15 ± 0.007) mol/(m 2 ·d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m 2 ·d) for DIC and (0.02 ± 0.09) mol/(m 2 ·d) for DOC in the dry season in the S. alterniflora -dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-023-2234-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accretion ; Aquatic ecosystems ; Aquatic plants ; Carbon ; Carbon dioxide ; Carbon fixation ; Carbon sinks ; Climatology ; Coastal inlets ; Creeks ; Creeks &amp; streams ; Deposition ; Dissolved inorganic carbon ; Dissolved organic carbon ; Dry season ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Estuaries ; Estuarine dynamics ; Exchanging ; Mangroves ; Marine &amp; Freshwater Sciences ; Oceanography ; Organic carbon ; Pore water ; Radon isotopes ; Rainy season ; Salt marshes ; Saltmarshes ; Seasons ; Soil water ; Soils ; Spartina alterniflora ; Tracers ; Vegetation ; Water exchange ; Wet season ; Wetlands</subject><ispartof>Acta oceanologica Sinica, 2023-08, Vol.42 (8), p.61-76</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3</citedby><cites>FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hyxb-e/hyxb-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Weizhen</creatorcontrib><creatorcontrib>Wang, Guizhi</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Dutta, Manab Kumar</creatorcontrib><creatorcontrib>Jin, Shilei</creatorcontrib><creatorcontrib>Dai, Guiyuan</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><title>The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove- Spartina alterniflora ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using 222 Rn and 228 Ra as tracers to be (2.15 ± 0.63) mol/(m 2 ·d) for dissolved inorganic carbon (DIC) and (-0.008 ± 0.07) mol/(m 2 ·d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m 2 ·d) for DIC and (-0.15 ± 0.007) mol/(m 2 ·d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m 2 ·d) for DIC and (0.02 ± 0.09) mol/(m 2 ·d) for DOC in the dry season in the S. alterniflora -dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands.</description><subject>Accretion</subject><subject>Aquatic ecosystems</subject><subject>Aquatic plants</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon fixation</subject><subject>Carbon sinks</subject><subject>Climatology</subject><subject>Coastal inlets</subject><subject>Creeks</subject><subject>Creeks &amp; streams</subject><subject>Deposition</subject><subject>Dissolved inorganic carbon</subject><subject>Dissolved organic carbon</subject><subject>Dry season</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Exchanging</subject><subject>Mangroves</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Oceanography</subject><subject>Organic carbon</subject><subject>Pore water</subject><subject>Radon isotopes</subject><subject>Rainy season</subject><subject>Salt marshes</subject><subject>Saltmarshes</subject><subject>Seasons</subject><subject>Soil water</subject><subject>Soils</subject><subject>Spartina alterniflora</subject><subject>Tracers</subject><subject>Vegetation</subject><subject>Water exchange</subject><subject>Wet season</subject><subject>Wetlands</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFOGzEQhq0KpIaUB-BmqQdO287YXu_6iCKglZB6gErcLMc7JkGJndoJCTw9RluJE2gOMyN9_8xofsbOEH4gQPezoKzRgJCNEFI14gubYK9Ng2DMEZuAaGXTQnv_lZ2U8gjQYiu7CaO7BfHgtsRT4N7leYo8U9mttsv4wENOa75Jmfi-IpnTwS9cfCC-jNzxdS1zeiLu4sBvNy5XjeNuVcm4DKuUHSefXlKkb-w4uFWh0_95yv5eXd7NfjU3f65_zy5uGi87vW2c8aRQIxkVTBg66VANCoPSmhR0RLUj4wfo517PndY9DuQH1QlECcrJKTsf5-5dDPU6-5h2OdaNdvF8mFsS9T_QA-hKfh_JTU7_dlS276gwAjRqQPUp1fdKG9P3WCkcKZ9TKZmC3eTl2uVni2Df3LGjO7Zut2_uWFE1YtSUytaP5vfJH4teAbUhkWs</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jiang, Weizhen</creator><creator>Wang, Guizhi</creator><creator>Li, Qing</creator><creator>Dutta, Manab Kumar</creator><creator>Jin, Shilei</creator><creator>Dai, Guiyuan</creator><creator>Xu, Yi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies,Xiamen University,Xiamen 361102,China</general><general>Key Laboratory of Coastal Environment and Resources of Zhejiang Province,School of Engineering,Westlake University,Hangzhou 310000,China</general><general>College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102,China</general><general>National Observation and Research Station for the Taiwan Strait Marine Ecosystem,Xiamen University,Zhangzhou 363000,China%State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China%State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China</general><general>College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102,China%State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China</general><general>State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230801</creationdate><title>The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone</title><author>Jiang, Weizhen ; Wang, Guizhi ; Li, Qing ; Dutta, Manab Kumar ; Jin, Shilei ; Dai, Guiyuan ; Xu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accretion</topic><topic>Aquatic ecosystems</topic><topic>Aquatic plants</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon fixation</topic><topic>Carbon sinks</topic><topic>Climatology</topic><topic>Coastal inlets</topic><topic>Creeks</topic><topic>Creeks &amp; streams</topic><topic>Deposition</topic><topic>Dissolved inorganic carbon</topic><topic>Dissolved organic carbon</topic><topic>Dry season</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Exchanging</topic><topic>Mangroves</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Oceanography</topic><topic>Organic carbon</topic><topic>Pore water</topic><topic>Radon isotopes</topic><topic>Rainy season</topic><topic>Salt marshes</topic><topic>Saltmarshes</topic><topic>Seasons</topic><topic>Soil water</topic><topic>Soils</topic><topic>Spartina alterniflora</topic><topic>Tracers</topic><topic>Vegetation</topic><topic>Water exchange</topic><topic>Wet season</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Weizhen</creatorcontrib><creatorcontrib>Wang, Guizhi</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Dutta, Manab Kumar</creatorcontrib><creatorcontrib>Jin, Shilei</creatorcontrib><creatorcontrib>Dai, Guiyuan</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Weizhen</au><au>Wang, Guizhi</au><au>Li, Qing</au><au>Dutta, Manab Kumar</au><au>Jin, Shilei</au><au>Dai, Guiyuan</au><au>Xu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><spage>61</spage><epage>76</epage><pages>61-76</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove- Spartina alterniflora ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using 222 Rn and 228 Ra as tracers to be (2.15 ± 0.63) mol/(m 2 ·d) for dissolved inorganic carbon (DIC) and (-0.008 ± 0.07) mol/(m 2 ·d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m 2 ·d) for DIC and (-0.15 ± 0.007) mol/(m 2 ·d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m 2 ·d) for DIC and (0.02 ± 0.09) mol/(m 2 ·d) for DOC in the dry season in the S. alterniflora -dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13131-023-2234-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-505X
ispartof Acta oceanologica Sinica, 2023-08, Vol.42 (8), p.61-76
issn 0253-505X
1869-1099
language eng
recordid cdi_wanfang_journals_hyxb_e202308006
source Springer Nature
subjects Accretion
Aquatic ecosystems
Aquatic plants
Carbon
Carbon dioxide
Carbon fixation
Carbon sinks
Climatology
Coastal inlets
Creeks
Creeks & streams
Deposition
Dissolved inorganic carbon
Dissolved organic carbon
Dry season
Earth and Environmental Science
Earth Sciences
Ecology
Engineering Fluid Dynamics
Environmental Chemistry
Estuaries
Estuarine dynamics
Exchanging
Mangroves
Marine & Freshwater Sciences
Oceanography
Organic carbon
Pore water
Radon isotopes
Rainy season
Salt marshes
Saltmarshes
Seasons
Soil water
Soils
Spartina alterniflora
Tracers
Vegetation
Water exchange
Wet season
Wetlands
title The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fate%20of%20carbon%20resulting%20from%20pore%20water%20exchange%20in%20a%20mangrove%20and%20Spartina%20alterniflora%20ecozone&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Jiang,%20Weizhen&rft.date=2023-08-01&rft.volume=42&rft.issue=8&rft.spage=61&rft.epage=76&rft.pages=61-76&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-023-2234-2&rft_dat=%3Cwanfang_jour_proqu%3Ehyxb_e202308006%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920616014&rft_id=info:pmid/&rft_wanfj_id=hyxb_e202308006&rfr_iscdi=true