Loading…
The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone
Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove- Spartina alterniflora ecozone in the Zhangjiang River Estuary,...
Saved in:
Published in: | Acta oceanologica Sinica 2023-08, Vol.42 (8), p.61-76 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3 |
container_end_page | 76 |
container_issue | 8 |
container_start_page | 61 |
container_title | Acta oceanologica Sinica |
container_volume | 42 |
creator | Jiang, Weizhen Wang, Guizhi Li, Qing Dutta, Manab Kumar Jin, Shilei Dai, Guiyuan Xu, Yi |
description | Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove-
Spartina alterniflora
ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using
222
Rn and
228
Ra as tracers to be (2.15 ± 0.63) mol/(m
2
·d) for dissolved inorganic carbon (DIC) and (-0.008 ± 0.07) mol/(m
2
·d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m
2
·d) for DIC and (-0.15 ± 0.007) mol/(m
2
·d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m
2
·d) for DIC and (0.02 ± 0.09) mol/(m
2
·d) for DOC in the dry season in the
S. alterniflora
-dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands. |
doi_str_mv | 10.1007/s13131-023-2234-2 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_hyxb_e202308006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>hyxb_e202308006</wanfj_id><sourcerecordid>hyxb_e202308006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3</originalsourceid><addsrcrecordid>eNp9kcFOGzEQhq0KpIaUB-BmqQdO287YXu_6iCKglZB6gErcLMc7JkGJndoJCTw9RluJE2gOMyN9_8xofsbOEH4gQPezoKzRgJCNEFI14gubYK9Ng2DMEZuAaGXTQnv_lZ2U8gjQYiu7CaO7BfHgtsRT4N7leYo8U9mttsv4wENOa75Jmfi-IpnTwS9cfCC-jNzxdS1zeiLu4sBvNy5XjeNuVcm4DKuUHSefXlKkb-w4uFWh0_95yv5eXd7NfjU3f65_zy5uGi87vW2c8aRQIxkVTBg66VANCoPSmhR0RLUj4wfo517PndY9DuQH1QlECcrJKTsf5-5dDPU6-5h2OdaNdvF8mFsS9T_QA-hKfh_JTU7_dlS276gwAjRqQPUp1fdKG9P3WCkcKZ9TKZmC3eTl2uVni2Df3LGjO7Zut2_uWFE1YtSUytaP5vfJH4teAbUhkWs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920616014</pqid></control><display><type>article</type><title>The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone</title><source>Springer Nature</source><creator>Jiang, Weizhen ; Wang, Guizhi ; Li, Qing ; Dutta, Manab Kumar ; Jin, Shilei ; Dai, Guiyuan ; Xu, Yi</creator><creatorcontrib>Jiang, Weizhen ; Wang, Guizhi ; Li, Qing ; Dutta, Manab Kumar ; Jin, Shilei ; Dai, Guiyuan ; Xu, Yi</creatorcontrib><description>Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove-
Spartina alterniflora
ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using
222
Rn and
228
Ra as tracers to be (2.15 ± 0.63) mol/(m
2
·d) for dissolved inorganic carbon (DIC) and (-0.008 ± 0.07) mol/(m
2
·d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m
2
·d) for DIC and (-0.15 ± 0.007) mol/(m
2
·d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m
2
·d) for DIC and (0.02 ± 0.09) mol/(m
2
·d) for DOC in the dry season in the
S. alterniflora
-dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-023-2234-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accretion ; Aquatic ecosystems ; Aquatic plants ; Carbon ; Carbon dioxide ; Carbon fixation ; Carbon sinks ; Climatology ; Coastal inlets ; Creeks ; Creeks & streams ; Deposition ; Dissolved inorganic carbon ; Dissolved organic carbon ; Dry season ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Engineering Fluid Dynamics ; Environmental Chemistry ; Estuaries ; Estuarine dynamics ; Exchanging ; Mangroves ; Marine & Freshwater Sciences ; Oceanography ; Organic carbon ; Pore water ; Radon isotopes ; Rainy season ; Salt marshes ; Saltmarshes ; Seasons ; Soil water ; Soils ; Spartina alterniflora ; Tracers ; Vegetation ; Water exchange ; Wet season ; Wetlands</subject><ispartof>Acta oceanologica Sinica, 2023-08, Vol.42 (8), p.61-76</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3</citedby><cites>FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/hyxb-e/hyxb-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Weizhen</creatorcontrib><creatorcontrib>Wang, Guizhi</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Dutta, Manab Kumar</creatorcontrib><creatorcontrib>Jin, Shilei</creatorcontrib><creatorcontrib>Dai, Guiyuan</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><title>The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove-
Spartina alterniflora
ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using
222
Rn and
228
Ra as tracers to be (2.15 ± 0.63) mol/(m
2
·d) for dissolved inorganic carbon (DIC) and (-0.008 ± 0.07) mol/(m
2
·d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m
2
·d) for DIC and (-0.15 ± 0.007) mol/(m
2
·d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m
2
·d) for DIC and (0.02 ± 0.09) mol/(m
2
·d) for DOC in the dry season in the
S. alterniflora
-dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands.</description><subject>Accretion</subject><subject>Aquatic ecosystems</subject><subject>Aquatic plants</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon fixation</subject><subject>Carbon sinks</subject><subject>Climatology</subject><subject>Coastal inlets</subject><subject>Creeks</subject><subject>Creeks & streams</subject><subject>Deposition</subject><subject>Dissolved inorganic carbon</subject><subject>Dissolved organic carbon</subject><subject>Dry season</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Exchanging</subject><subject>Mangroves</subject><subject>Marine & Freshwater Sciences</subject><subject>Oceanography</subject><subject>Organic carbon</subject><subject>Pore water</subject><subject>Radon isotopes</subject><subject>Rainy season</subject><subject>Salt marshes</subject><subject>Saltmarshes</subject><subject>Seasons</subject><subject>Soil water</subject><subject>Soils</subject><subject>Spartina alterniflora</subject><subject>Tracers</subject><subject>Vegetation</subject><subject>Water exchange</subject><subject>Wet season</subject><subject>Wetlands</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFOGzEQhq0KpIaUB-BmqQdO287YXu_6iCKglZB6gErcLMc7JkGJndoJCTw9RluJE2gOMyN9_8xofsbOEH4gQPezoKzRgJCNEFI14gubYK9Ng2DMEZuAaGXTQnv_lZ2U8gjQYiu7CaO7BfHgtsRT4N7leYo8U9mttsv4wENOa75Jmfi-IpnTwS9cfCC-jNzxdS1zeiLu4sBvNy5XjeNuVcm4DKuUHSefXlKkb-w4uFWh0_95yv5eXd7NfjU3f65_zy5uGi87vW2c8aRQIxkVTBg66VANCoPSmhR0RLUj4wfo517PndY9DuQH1QlECcrJKTsf5-5dDPU6-5h2OdaNdvF8mFsS9T_QA-hKfh_JTU7_dlS276gwAjRqQPUp1fdKG9P3WCkcKZ9TKZmC3eTl2uVni2Df3LGjO7Zut2_uWFE1YtSUytaP5vfJH4teAbUhkWs</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Jiang, Weizhen</creator><creator>Wang, Guizhi</creator><creator>Li, Qing</creator><creator>Dutta, Manab Kumar</creator><creator>Jin, Shilei</creator><creator>Dai, Guiyuan</creator><creator>Xu, Yi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies,Xiamen University,Xiamen 361102,China</general><general>Key Laboratory of Coastal Environment and Resources of Zhejiang Province,School of Engineering,Westlake University,Hangzhou 310000,China</general><general>College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102,China</general><general>National Observation and Research Station for the Taiwan Strait Marine Ecosystem,Xiamen University,Zhangzhou 363000,China%State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China%State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China</general><general>College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102,China%State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China</general><general>State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen 361102,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230801</creationdate><title>The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone</title><author>Jiang, Weizhen ; Wang, Guizhi ; Li, Qing ; Dutta, Manab Kumar ; Jin, Shilei ; Dai, Guiyuan ; Xu, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accretion</topic><topic>Aquatic ecosystems</topic><topic>Aquatic plants</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon fixation</topic><topic>Carbon sinks</topic><topic>Climatology</topic><topic>Coastal inlets</topic><topic>Creeks</topic><topic>Creeks & streams</topic><topic>Deposition</topic><topic>Dissolved inorganic carbon</topic><topic>Dissolved organic carbon</topic><topic>Dry season</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Exchanging</topic><topic>Mangroves</topic><topic>Marine & Freshwater Sciences</topic><topic>Oceanography</topic><topic>Organic carbon</topic><topic>Pore water</topic><topic>Radon isotopes</topic><topic>Rainy season</topic><topic>Salt marshes</topic><topic>Saltmarshes</topic><topic>Seasons</topic><topic>Soil water</topic><topic>Soils</topic><topic>Spartina alterniflora</topic><topic>Tracers</topic><topic>Vegetation</topic><topic>Water exchange</topic><topic>Wet season</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Weizhen</creatorcontrib><creatorcontrib>Wang, Guizhi</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Dutta, Manab Kumar</creatorcontrib><creatorcontrib>Jin, Shilei</creatorcontrib><creatorcontrib>Dai, Guiyuan</creatorcontrib><creatorcontrib>Xu, Yi</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Weizhen</au><au>Wang, Guizhi</au><au>Li, Qing</au><au>Dutta, Manab Kumar</au><au>Jin, Shilei</au><au>Dai, Guiyuan</au><au>Xu, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>42</volume><issue>8</issue><spage>61</spage><epage>76</epage><pages>61-76</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>Mangrove and salt-marsh wetlands are important coastal carbon sinks. In order to quantify carbon export via pore water exchange and to evaluate subsequent fate of the exported carbon, we carried out continuous observations in a mangrove-
Spartina alterniflora
ecozone in the Zhangjiang River Estuary, China. The carbon fluxes via pore water exchange were estimated using
222
Rn and
228
Ra as tracers to be (2.15 ± 0.63) mol/(m
2
·d) for dissolved inorganic carbon (DIC) and (-0.008 ± 0.07) mol/(m
2
·d) for dissolved organic carbon (DOC) in the wet season and (3.02 ± 0.65) mol/(m
2
·d) for DIC and (-0.15 ± 0.007) mol/(m
2
·d) for DOC in the dry season in the mangrove-dominated creek (M-creek), while (2.52 ± 0.82) mol/(m
2
·d) for DIC and (0.02 ± 0.09) mol/(m
2
·d) for DOC in the dry season in the
S. alterniflora
-dominated creek (SA-creek). The negative value means that pore water was a sink of DOC in the creek. The total carbon via pore water exchange in the tidal creeks in the mangroves accounted for 41%–55% of the net carbon fixed by mangrove vegetation and was 3–4 times as much as the soil carbon accretion in the mangroves. The exported carbon in the form of DIC contributed all of the carbon outwelling from the M-creek and 79% of the carbon outwelling from the SA-creek, implying effective fixation of carbon by the wetland ecosystem. Moreover, it resulted in 54% in the dry season, 75% in the wet season of the carbon dioxide released from the M-creek to the atmosphere, and 84% of the release from the SA-creek. Therefore, quantification of pore water exchange and related soil carbon loss is essential to trace the fate of carbon fixed in intertidal wetlands.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13131-023-2234-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-505X |
ispartof | Acta oceanologica Sinica, 2023-08, Vol.42 (8), p.61-76 |
issn | 0253-505X 1869-1099 |
language | eng |
recordid | cdi_wanfang_journals_hyxb_e202308006 |
source | Springer Nature |
subjects | Accretion Aquatic ecosystems Aquatic plants Carbon Carbon dioxide Carbon fixation Carbon sinks Climatology Coastal inlets Creeks Creeks & streams Deposition Dissolved inorganic carbon Dissolved organic carbon Dry season Earth and Environmental Science Earth Sciences Ecology Engineering Fluid Dynamics Environmental Chemistry Estuaries Estuarine dynamics Exchanging Mangroves Marine & Freshwater Sciences Oceanography Organic carbon Pore water Radon isotopes Rainy season Salt marshes Saltmarshes Seasons Soil water Soils Spartina alterniflora Tracers Vegetation Water exchange Wet season Wetlands |
title | The fate of carbon resulting from pore water exchange in a mangrove and Spartina alterniflora ecozone |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A30%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fate%20of%20carbon%20resulting%20from%20pore%20water%20exchange%20in%20a%20mangrove%20and%20Spartina%20alterniflora%20ecozone&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Jiang,%20Weizhen&rft.date=2023-08-01&rft.volume=42&rft.issue=8&rft.spage=61&rft.epage=76&rft.pages=61-76&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-023-2234-2&rft_dat=%3Cwanfang_jour_proqu%3Ehyxb_e202308006%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-a9ce4161e94f9fd73a14d41f466e407ee4d4e9cd08bc6ba6681decd47211304a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2920616014&rft_id=info:pmid/&rft_wanfj_id=hyxb_e202308006&rfr_iscdi=true |