Loading…
Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process
The carbon dioxide (CO2) removal efficiency, reaction rate, and CO2 loading into aqueous blended monoethanolamine (MEA) + 2-amino-2-methyl-l-propanol (AMP) solutions to enhance absorption characteristics of MEA and AMP were carried out by the absorption/regeneration process. As a result, compared to...
Saved in:
Published in: | Journal of environmental sciences (China) 2009, Vol.21 (7), p.907-913 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The carbon dioxide (CO2) removal efficiency, reaction rate, and CO2 loading into aqueous blended monoethanolamine (MEA) + 2-amino-2-methyl-l-propanol (AMP) solutions to enhance absorption characteristics of MEA and AMP were carried out by the absorption/regeneration process. As a result, compared to aqueous MEA and AMP solutions, aqueous blended MEA + AMP solutions have a higher CO2 loading than MEA and a higher reaction rate than AMP. The CO2 loading of rich amine of aqueous 18 wt.% MEA + 12 wt.% AMP solution was 0.62 mol CO2/mol amine, which is 51.2% more than 30 wt.% MEA (0.41 mol CO2/mol amine). Consequently, blending MEA and AMP could be an effective way to design considering economical efficiency and used to operate absorber for a long time. |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/s1001-0742(08)62360-8 |