Loading…

A Robust and Fast Non-Local Means Algorithm for Image Denoising

In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-l...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer science and technology 2008-03, Vol.23 (2), p.270-279
Main Authors: Liu, Yan-Li, Wang, Jin, Chen, Xi, Guo, Yan-Wen, Peng, Qun-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3
cites cdi_FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3
container_end_page 279
container_issue 2
container_start_page 270
container_title Journal of computer science and technology
container_volume 23
creator Liu, Yan-Li
Wang, Jin
Chen, Xi
Guo, Yan-Wen
Peng, Qun-Sheng
description In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.
doi_str_mv 10.1007/s11390-008-9129-8
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e200802012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>jsjkxjsxb_e200802012</wanfj_id><sourcerecordid>jsjkxjsxb_e200802012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosouK7-AG_FkwejM-lHkpMs6urCqiB6Dmk3ra3dZE26uP57s1QUBC-TOTzzzIQ3io4RzhGAXXjERAAB4EQgFYTvRCPkOZCUpWI39ABARCj70YH3LUDCIE1H0eUkfrLF2vexMot4qkLzYA2Z21J18b1WxseTrrau6V-XcWVdPFuqWsfX2tjGN6Y-jPYq1Xl99P2Oo5fpzfPVHZk_3s6uJnNSJjzrSVIWmGGRlYiCUcG4yhZVIbRiRcpyliyQK5otcp6oAlSWAkvLCnmGFCkTRZmMo7PB-6FMpUwtW7t2JmyUrW_fNq3fFFLT8H2ggDTgpwO-cvZ9rX0vl40vddcpo-3aS8wZJnnQ84Ce_EF_1JwjzXIQGCAcoNJZ752u5Mo1S-U-JYLcBiCHAGS4QG4DkFsxHWZ8YE2t3a_4_6EvycyE_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881256091</pqid></control><display><type>article</type><title>A Robust and Fast Non-Local Means Algorithm for Image Denoising</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Liu, Yan-Li ; Wang, Jin ; Chen, Xi ; Guo, Yan-Wen ; Peng, Qun-Sheng</creator><creatorcontrib>Liu, Yan-Li ; Wang, Jin ; Chen, Xi ; Guo, Yan-Wen ; Peng, Qun-Sheng</creatorcontrib><description>In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-008-9129-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Breaking ; Computation ; Computer Science ; Data Structures and Information Theory ; Decomposition ; Fast Fourier transformations ; Fourier transforms ; Information Systems Applications (incl.Internet) ; Noise reduction ; Pyramids ; Redundancy ; Regular Paper ; Robustness ; Similarity ; Software Engineering ; Theory of Computation</subject><ispartof>Journal of computer science and technology, 2008-03, Vol.23 (2), p.270-279</ispartof><rights>Science Press, Beijing, China and Springer Science + Business Media, LLC, USA 2008</rights><rights>Science Press, Beijing, China and Springer Science + Business Media, LLC, USA 2008.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3</citedby><cites>FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/jsjkxjsxb-e/jsjkxjsxb-e.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/881256091?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339</link.rule.ids></links><search><creatorcontrib>Liu, Yan-Li</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Guo, Yan-Wen</creatorcontrib><creatorcontrib>Peng, Qun-Sheng</creatorcontrib><title>A Robust and Fast Non-Local Means Algorithm for Image Denoising</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><description>In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breaking</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Decomposition</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Noise reduction</subject><subject>Pyramids</subject><subject>Redundancy</subject><subject>Regular Paper</subject><subject>Robustness</subject><subject>Similarity</subject><subject>Software Engineering</subject><subject>Theory of Computation</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kU1LxDAQhosouK7-AG_FkwejM-lHkpMs6urCqiB6Dmk3ra3dZE26uP57s1QUBC-TOTzzzIQ3io4RzhGAXXjERAAB4EQgFYTvRCPkOZCUpWI39ABARCj70YH3LUDCIE1H0eUkfrLF2vexMot4qkLzYA2Z21J18b1WxseTrrau6V-XcWVdPFuqWsfX2tjGN6Y-jPYq1Xl99P2Oo5fpzfPVHZk_3s6uJnNSJjzrSVIWmGGRlYiCUcG4yhZVIbRiRcpyliyQK5otcp6oAlSWAkvLCnmGFCkTRZmMo7PB-6FMpUwtW7t2JmyUrW_fNq3fFFLT8H2ggDTgpwO-cvZ9rX0vl40vddcpo-3aS8wZJnnQ84Ce_EF_1JwjzXIQGCAcoNJZ752u5Mo1S-U-JYLcBiCHAGS4QG4DkFsxHWZ8YE2t3a_4_6EvycyE_Q</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Liu, Yan-Li</creator><creator>Wang, Jin</creator><creator>Chen, Xi</creator><creator>Guo, Yan-Wen</creator><creator>Peng, Qun-Sheng</creator><general>Springer US</general><general>Springer Nature B.V</general><general>State Key Lab of CAD &amp; CG, Zhejiang University, Hangzhou 310058, China</general><general>Department of Mathematics, Zhejiang University, Hangzhou 310058, China%State Key Lab of CAD &amp; CG, Zhejiang University, Hangzhou 310058, China%State Key Lab of Novel Software Technology, Nanjing University, Nanjing 210000, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20080301</creationdate><title>A Robust and Fast Non-Local Means Algorithm for Image Denoising</title><author>Liu, Yan-Li ; Wang, Jin ; Chen, Xi ; Guo, Yan-Wen ; Peng, Qun-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breaking</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Decomposition</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Noise reduction</topic><topic>Pyramids</topic><topic>Redundancy</topic><topic>Regular Paper</topic><topic>Robustness</topic><topic>Similarity</topic><topic>Software Engineering</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yan-Li</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Guo, Yan-Wen</creatorcontrib><creatorcontrib>Peng, Qun-Sheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yan-Li</au><au>Wang, Jin</au><au>Chen, Xi</au><au>Guo, Yan-Wen</au><au>Peng, Qun-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust and Fast Non-Local Means Algorithm for Image Denoising</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>23</volume><issue>2</issue><spage>270</spage><epage>279</epage><pages>270-279</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11390-008-9129-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1000-9000
ispartof Journal of computer science and technology, 2008-03, Vol.23 (2), p.270-279
issn 1000-9000
1860-4749
language eng
recordid cdi_wanfang_journals_jsjkxjsxb_e200802012
source ABI/INFORM global; Springer Nature
subjects Algorithms
Artificial Intelligence
Breaking
Computation
Computer Science
Data Structures and Information Theory
Decomposition
Fast Fourier transformations
Fourier transforms
Information Systems Applications (incl.Internet)
Noise reduction
Pyramids
Redundancy
Regular Paper
Robustness
Similarity
Software Engineering
Theory of Computation
title A Robust and Fast Non-Local Means Algorithm for Image Denoising
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20and%20Fast%20Non-Local%20Means%20Algorithm%20for%20Image%20Denoising&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Liu,%20Yan-Li&rft.date=2008-03-01&rft.volume=23&rft.issue=2&rft.spage=270&rft.epage=279&rft.pages=270-279&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-008-9129-8&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e200802012%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881256091&rft_id=info:pmid/&rft_wanfj_id=jsjkxjsxb_e200802012&rfr_iscdi=true