Loading…
A Robust and Fast Non-Local Means Algorithm for Image Denoising
In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-l...
Saved in:
Published in: | Journal of computer science and technology 2008-03, Vol.23 (2), p.270-279 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3 |
container_end_page | 279 |
container_issue | 2 |
container_start_page | 270 |
container_title | Journal of computer science and technology |
container_volume | 23 |
creator | Liu, Yan-Li Wang, Jin Chen, Xi Guo, Yan-Wen Peng, Qun-Sheng |
description | In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm. |
doi_str_mv | 10.1007/s11390-008-9129-8 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e200802012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>jsjkxjsxb_e200802012</wanfj_id><sourcerecordid>jsjkxjsxb_e200802012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosouK7-AG_FkwejM-lHkpMs6urCqiB6Dmk3ra3dZE26uP57s1QUBC-TOTzzzIQ3io4RzhGAXXjERAAB4EQgFYTvRCPkOZCUpWI39ABARCj70YH3LUDCIE1H0eUkfrLF2vexMot4qkLzYA2Z21J18b1WxseTrrau6V-XcWVdPFuqWsfX2tjGN6Y-jPYq1Xl99P2Oo5fpzfPVHZk_3s6uJnNSJjzrSVIWmGGRlYiCUcG4yhZVIbRiRcpyliyQK5otcp6oAlSWAkvLCnmGFCkTRZmMo7PB-6FMpUwtW7t2JmyUrW_fNq3fFFLT8H2ggDTgpwO-cvZ9rX0vl40vddcpo-3aS8wZJnnQ84Ce_EF_1JwjzXIQGCAcoNJZ752u5Mo1S-U-JYLcBiCHAGS4QG4DkFsxHWZ8YE2t3a_4_6EvycyE_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881256091</pqid></control><display><type>article</type><title>A Robust and Fast Non-Local Means Algorithm for Image Denoising</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Liu, Yan-Li ; Wang, Jin ; Chen, Xi ; Guo, Yan-Wen ; Peng, Qun-Sheng</creator><creatorcontrib>Liu, Yan-Li ; Wang, Jin ; Chen, Xi ; Guo, Yan-Wen ; Peng, Qun-Sheng</creatorcontrib><description>In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-008-9129-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Breaking ; Computation ; Computer Science ; Data Structures and Information Theory ; Decomposition ; Fast Fourier transformations ; Fourier transforms ; Information Systems Applications (incl.Internet) ; Noise reduction ; Pyramids ; Redundancy ; Regular Paper ; Robustness ; Similarity ; Software Engineering ; Theory of Computation</subject><ispartof>Journal of computer science and technology, 2008-03, Vol.23 (2), p.270-279</ispartof><rights>Science Press, Beijing, China and Springer Science + Business Media, LLC, USA 2008</rights><rights>Science Press, Beijing, China and Springer Science + Business Media, LLC, USA 2008.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3</citedby><cites>FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/jsjkxjsxb-e/jsjkxjsxb-e.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/881256091?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339</link.rule.ids></links><search><creatorcontrib>Liu, Yan-Li</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Guo, Yan-Wen</creatorcontrib><creatorcontrib>Peng, Qun-Sheng</creatorcontrib><title>A Robust and Fast Non-Local Means Algorithm for Image Denoising</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><description>In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breaking</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Decomposition</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Noise reduction</subject><subject>Pyramids</subject><subject>Redundancy</subject><subject>Regular Paper</subject><subject>Robustness</subject><subject>Similarity</subject><subject>Software Engineering</subject><subject>Theory of Computation</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kU1LxDAQhosouK7-AG_FkwejM-lHkpMs6urCqiB6Dmk3ra3dZE26uP57s1QUBC-TOTzzzIQ3io4RzhGAXXjERAAB4EQgFYTvRCPkOZCUpWI39ABARCj70YH3LUDCIE1H0eUkfrLF2vexMot4qkLzYA2Z21J18b1WxseTrrau6V-XcWVdPFuqWsfX2tjGN6Y-jPYq1Xl99P2Oo5fpzfPVHZk_3s6uJnNSJjzrSVIWmGGRlYiCUcG4yhZVIbRiRcpyliyQK5otcp6oAlSWAkvLCnmGFCkTRZmMo7PB-6FMpUwtW7t2JmyUrW_fNq3fFFLT8H2ggDTgpwO-cvZ9rX0vl40vddcpo-3aS8wZJnnQ84Ce_EF_1JwjzXIQGCAcoNJZ752u5Mo1S-U-JYLcBiCHAGS4QG4DkFsxHWZ8YE2t3a_4_6EvycyE_Q</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Liu, Yan-Li</creator><creator>Wang, Jin</creator><creator>Chen, Xi</creator><creator>Guo, Yan-Wen</creator><creator>Peng, Qun-Sheng</creator><general>Springer US</general><general>Springer Nature B.V</general><general>State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China</general><general>Department of Mathematics, Zhejiang University, Hangzhou 310058, China%State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China%State Key Lab of Novel Software Technology, Nanjing University, Nanjing 210000, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20080301</creationdate><title>A Robust and Fast Non-Local Means Algorithm for Image Denoising</title><author>Liu, Yan-Li ; Wang, Jin ; Chen, Xi ; Guo, Yan-Wen ; Peng, Qun-Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breaking</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Decomposition</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Noise reduction</topic><topic>Pyramids</topic><topic>Redundancy</topic><topic>Regular Paper</topic><topic>Robustness</topic><topic>Similarity</topic><topic>Software Engineering</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yan-Li</creatorcontrib><creatorcontrib>Wang, Jin</creatorcontrib><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Guo, Yan-Wen</creatorcontrib><creatorcontrib>Peng, Qun-Sheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yan-Li</au><au>Wang, Jin</au><au>Chen, Xi</au><au>Guo, Yan-Wen</au><au>Peng, Qun-Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust and Fast Non-Local Means Algorithm for Image Denoising</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><date>2008-03-01</date><risdate>2008</risdate><volume>23</volume><issue>2</issue><spage>270</spage><epage>279</epage><pages>270-279</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>In the paper, we propose a robust and fast image denoising method. The approach integrates both Non-Local means algorithm and Laplacian Pyramid. Given an image to be denoised, we first decompose it into Laplacian pyramid. Exploiting the redundancy property of Laplacian pyramid, we then perform non-local means on every level image of Laplacian pyramid. Essentially, we use the similarity of image features in Laplacian pyramid to act as weight to denoise image. Since the features extracted in Laplacian pyramid are localized in spatial position and scale, they are much more able to describe image, and computing the similarity between them is more reasonable and more robust. Also, based on the efficient Summed Square Image (SSI) scheme and Fast Fourier Transform (FFT), we present an accelerating algorithm to break the bottleneck of non-local means algorithm — similarity computation of compare windows. After speedup, our algorithm is fifty times faster than original non-local means algorithm. Experiments demonstrated the effectiveness of our algorithm.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11390-008-9129-8</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | Journal of computer science and technology, 2008-03, Vol.23 (2), p.270-279 |
issn | 1000-9000 1860-4749 |
language | eng |
recordid | cdi_wanfang_journals_jsjkxjsxb_e200802012 |
source | ABI/INFORM global; Springer Nature |
subjects | Algorithms Artificial Intelligence Breaking Computation Computer Science Data Structures and Information Theory Decomposition Fast Fourier transformations Fourier transforms Information Systems Applications (incl.Internet) Noise reduction Pyramids Redundancy Regular Paper Robustness Similarity Software Engineering Theory of Computation |
title | A Robust and Fast Non-Local Means Algorithm for Image Denoising |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T20%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20and%20Fast%20Non-Local%20Means%20Algorithm%20for%20Image%20Denoising&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Liu,%20Yan-Li&rft.date=2008-03-01&rft.volume=23&rft.issue=2&rft.spage=270&rft.epage=279&rft.pages=270-279&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-008-9129-8&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e200802012%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-3cb151b5c11972978a5dfb9ea7b47673d18a25d683ab0a54074cf185121279bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881256091&rft_id=info:pmid/&rft_wanfj_id=jsjkxjsxb_e200802012&rfr_iscdi=true |