Loading…
Multi-Level Partition of Unity Algebraic Point Set Surfaces
TP391.41; We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local movin...
Saved in:
Published in: | 计算机科学技术学报(英文版) 2011, Vol.26 (2), p.229-238 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 238 |
container_issue | 2 |
container_start_page | 229 |
container_title | 计算机科学技术学报(英文版) |
container_volume | 26 |
creator | Chun-Xia Xiao |
description | TP391.41; We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion. |
doi_str_mv | 10.1007/s11390-011-1125-8 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e201102003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>jsjkxjsxb_e201102003</wanfj_id><sourcerecordid>jsjkxjsxb_e201102003</sourcerecordid><originalsourceid>FETCH-wanfang_journals_jsjkxjsxb_e2011020033</originalsourceid><addsrcrecordid>eNqVjksKwjAYhLNQsD4O4C4HMPqnrdTiSkRxoVBQ1yUtSUkMCSSpj9ubhRdwMTOLb2AGoTmFJQUoVp7SrAQClBJK0zXZDFASAZAy2giNvVcAWQF5nqDtpddBkjN_co0r5oIM0hpsBb4bGT54pzveOCZbXFlpAr7yqN4J1nI_RUPBtOezX07Q4ni47U_kxYxgpquV7Z2JpFZePd7Kv5uap_EWpHE_-7P-BergQq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><source>ABI/INFORM global</source><source>Springer Link</source><creator>Chun-Xia Xiao</creator><creatorcontrib>Chun-Xia Xiao</creatorcontrib><description>TP391.41; We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</description><identifier>ISSN: 1000-9000</identifier><identifier>DOI: 10.1007/s11390-011-1125-8</identifier><language>eng</language><publisher>School of Computer, Wuhan University, Wuhan 430072, China</publisher><ispartof>计算机科学技术学报(英文版), 2011, Vol.26 (2), p.229-238</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/jsjkxjsxb-e/jsjkxjsxb-e.jpg</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Chun-Xia Xiao</creatorcontrib><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><title>计算机科学技术学报(英文版)</title><description>TP391.41; We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</description><issn>1000-9000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqVjksKwjAYhLNQsD4O4C4HMPqnrdTiSkRxoVBQ1yUtSUkMCSSpj9ubhRdwMTOLb2AGoTmFJQUoVp7SrAQClBJK0zXZDFASAZAy2giNvVcAWQF5nqDtpddBkjN_co0r5oIM0hpsBb4bGT54pzveOCZbXFlpAr7yqN4J1nI_RUPBtOezX07Q4ni47U_kxYxgpquV7Z2JpFZePd7Kv5uap_EWpHE_-7P-BergQq4</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Chun-Xia Xiao</creator><general>School of Computer, Wuhan University, Wuhan 430072, China</general><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2011</creationdate><title>Multi-Level Partition of Unity Algebraic Point Set Surfaces</title><author>Chun-Xia Xiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-wanfang_journals_jsjkxjsxb_e2011020033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun-Xia Xiao</creatorcontrib><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>计算机科学技术学报(英文版)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun-Xia Xiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Level Partition of Unity Algebraic Point Set Surfaces</atitle><jtitle>计算机科学技术学报(英文版)</jtitle><date>2011</date><risdate>2011</risdate><volume>26</volume><issue>2</issue><spage>229</spage><epage>238</epage><pages>229-238</pages><issn>1000-9000</issn><abstract>TP391.41; We present a multi-level partition of unity algebraic set surfaces (MPU-APSS) for surface reconstruction which can be represented by either a projection or in an implicit form. An algebraic point set surface (APSS) defines a smooth surface from a set of unorganized points using local moving least-squares (MLS) fitting of algebraic spheres. However, due to the local nature, APSS does not work well for geometry editing and modeling. Instead, our method builds an implicit approximation function for the scattered point set based on the partition of unity approach. By using an octree subdivision strategy, we first adaptively construct local algebraic spheres for the point set, and then apply weighting functions to blend together these local shape functions. Finally, we compute an error-controlled approximation of the signed distance function from the surface. In addition, we present an efficient projection operator which makes our representation suitable for point set filtering and dynamic point resampling. We demonstrate the effectiveness of our unified approach for both surface reconstruction and geometry modeling such as surface completion.</abstract><pub>School of Computer, Wuhan University, Wuhan 430072, China</pub><doi>10.1007/s11390-011-1125-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9000 |
ispartof | 计算机科学技术学报(英文版), 2011, Vol.26 (2), p.229-238 |
issn | 1000-9000 |
language | eng |
recordid | cdi_wanfang_journals_jsjkxjsxb_e201102003 |
source | ABI/INFORM global; Springer Link |
title | Multi-Level Partition of Unity Algebraic Point Set Surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Level%20Partition%20of%20Unity%20Algebraic%20Point%20Set%20Surfaces&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Chun-Xia%20Xiao&rft.date=2011&rft.volume=26&rft.issue=2&rft.spage=229&rft.epage=238&rft.pages=229-238&rft.issn=1000-9000&rft_id=info:doi/10.1007/s11390-011-1125-8&rft_dat=%3Cwanfang_jour%3Ejsjkxjsxb_e201102003%3C/wanfang_jour%3E%3Cgrp_id%3Ecdi_FETCH-wanfang_journals_jsjkxjsxb_e2011020033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=jsjkxjsxb_e201102003&rfr_iscdi=true |