Loading…

Community Detection in Dynamic Social Networks Based on Multiobjective Immune Algorithm

Community structure is one of the most has received an enormous amount of attention in recent important properties in social networks, and community detection years. In dynamic networks, the communities may evolve over time so that pose more challenging tasks than in static ones. Community detection...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer science and technology 2012, Vol.27 (3), p.455-467
Main Author: 公茂果 张岭军 马晶晶 焦李成
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Community structure is one of the most has received an enormous amount of attention in recent important properties in social networks, and community detection years. In dynamic networks, the communities may evolve over time so that pose more challenging tasks than in static ones. Community detection in dynamic networks is a problem which can naturally be formulated with two contradictory objectives and consequently be solved by multiobjective optimization algorithms. In this paper, a novel nmltiobjective immune algorithm is proposed to solve the community detection problem in dynamic networks. It employs the framework of nondominated neighbor immune algorithm to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. The problem-specific knowledge is incorporated in genetic operators and local search to improve the effectiveness and efficiency of our method. Experimental studies based on four synthetic datasets and two real-world social networks demonstrate that our algorithm can not only find community structure and capture community evolution more accurately but also be more steadily than the state-of-the-art algorithms.
ISSN:1000-9000
1860-4749
DOI:10.1007/s11390-012-1235-y