Loading…

Pattern Matching with Flexible Wildcards

Pattern matching with wildcards(PMW) has great theoretical and practical significance in bioinformatics,information retrieval, and pattern mining. Due to the uncertainty of wildcards, not only is the number of all matches exponential with respect to the maximal gap flexibility and the pattern length...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer science and technology 2014-09, Vol.29 (5), p.740-750
Main Author: 吴信东 强继朋 谢飞
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pattern matching with wildcards(PMW) has great theoretical and practical significance in bioinformatics,information retrieval, and pattern mining. Due to the uncertainty of wildcards, not only is the number of all matches exponential with respect to the maximal gap flexibility and the pattern length, but the matching positions in PMW are also hard to choose. The objective to count the maximal number of matches one by one is computationally infeasible. Therefore,rather than solving the generic PMW problem, many research efforts have further defined new problems within PMW according to different application backgrounds. To break through the limitations of either fixing the number or allowing an unbounded number of wildcards, pattern matching with flexible wildcards(PMFW) allows the users to control the ranges of wildcards. In this paper, we provide a survey on the state-of-the-art algorithms for PMFW, with detailed analyses and comparisons, and discuss challenges and opportunities in PMFW research and applications.
ISSN:1000-9000
1860-4749
DOI:10.1007/s11390-014-1464-3