Loading…
Modular Timing Constraints for Delay-Insensitive Systems
This paper introduces ARCtimer, a framework for modeling, generating, verifying, and enforcing timing constraints for individual self-timed handshake components. The constraints guarantee that the component's gate-level circuit implementation obeys the component's handshake protocol specification. B...
Saved in:
Published in: | Journal of computer science and technology 2016, Vol.31 (1), p.77-106 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper introduces ARCtimer, a framework for modeling, generating, verifying, and enforcing timing constraints for individual self-timed handshake components. The constraints guarantee that the component's gate-level circuit implementation obeys the component's handshake protocol specification. Because the handshake protocols are delayinsensitive, self-timed systems built using ARCtimer-verified components are also delay-insensitive. By carefully considering time locally, we can ignore time globally. ARCtimer comes early in the design process as part of building a library of verified components for later system use. The library also stores static timing analysis (STA) code to validate and enforce the component's constraints in any self-timed system built using the library. The library descriptions of a handshake component's circuit, protocol, timing constraints, and STA code are robust to circuit modifications applied later in the design process by technology mapping or layout tools. In addition to presenting new work and discussing related work, this paper identifies critical choices and explains what modular timing verification entails and how it works. |
---|---|
ISSN: | 1000-9000 1860-4749 |
DOI: | 10.1007/s11390-016-1613-y |